SAFE STREETS AND ROADS FOR ALL

SAFETY ACTION PLAN

HUNTINGTON COUNTY, IN

SEPTEMBER 2024

Acknowledgements

Project Team:

Troy Hostetler - Huntington County Highway Superintendent Tom Wall - Huntington County Commissioner Rob Miller - Huntington County Commissioner Terry Stoffel – Huntington County Commissioner Matt Brinkman - Region 3A Mark Herald, PE - VS Engineering Patrick Richardville, PE - VS Engineering Micah Kirk, EI - VS Engineering Julia Surber - VS Engineering

Additional Stakeholders:

Mayor Richard Strick - City of Huntington Adam Cuttriss - Director of Public Works, City of Huntington Cory Boxell - Chief of Police, City of Huntington Tony Johnson - Fire Chief, City of Huntington Sheriff Chris Newton, Huntington County Sheriff's Department Chad Hammel - Chief Deputy, Huntington County Sheriff's Department Huntington County Fire Chiefs Association Carla Gebert - Parkview EMS Huntington County Tim Allen - Huntington County Public Safety Dispatch Director Thomas Fuller - Deputy Director, Huntington County Emergency Management Agency Laura Slusher, PE - Indiana LTAP Dana Plattner, PE - INDOT Fort Wayne District Traffic Engineer Aaron Popplewell - Town Superintendent, Town of Roanoke Laury Powell - Clerk/Treasurer, Town of Andrews Mike Grant - Operations Manager, Town of Markle Michelle Schweikhardt - Warren Town Council

Table of contents

1. OVERVIEW

- 1. LEADERSHIP COMMITMENT AND
- 2. PLANNING STRUCTURE
- 3. PROJECT PURPOSE
- 4. PROJECT NEED

2. ENGAGEMENT COLLABORATION

- 1. STAKEHOLDER INPUT
- 2. EQUITY ANALYSIS
- 3. SAFETY ANALYSIS
 - 1. EXISTING CRASH ANALYSIS

STRATEGY AND PROJECT SELECT

- 1. PROJECT IDENTIFICATION
- 2. PROJECTS SELECTED FOR IMPRO
- SR 105 / DIVISION RD INTERSECT
- 4. SR 5 WARREN RD CORRIDOR
- US 224 CORRIDOR IMPROVEMEN
- 6. SR 16 WIDENING
- 7. OLD 24 CORRIDOR RECONFIGURA
- 8. SR 9 / DIVISION RD INTERSECTIO
- 9. LOW-COST SIGNAGE IMPROVEM 10. PARK DR / LAFONTAINE ST INTER
- 11. US 24 / SR 9 SIGNAL IMPROVEME
- 12. ETNA RD / CR 100 N INTERSECTIO
- 13. US 24 AUXILIARY LANE
- 14. MARKET ST / FIRST ST INTERSECT
- 15. SR 5 GOSHEN RD WIDENING
- 16. SR 3 / SR 116 BUMPOUT
- 17. US 24 / CR 900 N SLOTTED LEFT
- 18. CR 300 W WIDENING
- 19. JEFFERSON ST SIDEWALK
- 20. ANDREWS SR 105 TRAIL 21. WARREN SR 5 SIDEWALK

5. POLICY, PROCESSES, PROGRESS

- 1. CURRENT PROCESSES
- 2. MEASURING PROGRESS
- 3. TRANSPARENCY
- 4. POLICY ADOPTION / BEST PRACT
- 6. Concurrence

7. APPENDICES

- 1. A: PROVEN SAFETY COUNTERMEA
- 2. B: PROJECT SCORING MATRIX

	3
O GOAL SETTING	4
	4
	4
	4
N, AND EQUITY	5
N, AND EQUITY	
	6
	6
	7
	8
TIONS	12
1003	
	13
VEMENTS	13
ION	14
	15
NTS	16
	19
ATION	21
Ν	24
IENTS	26
RSECTION	27
ENTS	28
N	29
	31
TION	33
	35
	37
TURN	39
	40
	43
	44
	45
	75
	4.6
AND TRANSPARENCY	46
	47
	47
	47
ICES	47
	48
	.0
	49
ASURES	50
	58

Overview

1. Overview

1. LEADERSHIP COMMITMENT AND GOAL SETTING

HUNTINGTON COUNTY BOARD OF COMMISSIONERS

201 North Jefferson Street, Room 103A, Huntington, Indiana 46750 (260) 358-4822 | (260) 358-4823 fax | <u>commissioners@huntington.in.us</u>

As your County Commissioners, we are deeply committed to the safety and well-being of all our residents. Today we are proud to announce Huntington County's ambitious goal to reduce fatal vehicle crashes and serious injuries to the lowest possible levels, with the aim of achieving zero roadway fatalities and serious injuries.

Currently, our fatality rate stands at 22.4 per 100,000 people annually. Over the next decade, we are resolutely dedicated to lowering this rate to under 2.7 per 100,000 people. This goal represents our unwavering commitment to enhancing roadway safety and protecting our community.

To achieve this, we will undertake a comprehensive approach. The first crucial step in this process involves thoroughly characterizing our roadway safety issues and developing a robust Safety Action Plan. This plan will identify specific strategies and interventions designed to address the root causes of crashes and improve overall safety.

As part of our initial efforts, we have applied for Highway Safety Improvement Program (HSIP) funds to upgrade our roadway signage. Improved signage will play a vital role in alerting drivers to potential hazards and ensuring that safety measures are clear and effective.

In addition, we are in the process of developing a Countywide Master Trails Plan. This initiative aims to create safer routes for pedestrians and cyclists, promoting alternative transportation methods while reducing the risk of accidents involving vulnerable road users.

Together, these actions mark the beginning of our comprehensive strategy to make our roads safer. We will continue to engage with community stakeholders, monitor progress, and adapt our approach to ensure that we move closer to our goal of zero fatalities and serious injuries.

Your safety is our priority, and with these initiatives, we are taking significant steps toward a safer and more secure future for everyone in Huntington County.

Tom Wall, President Huntington County Commissioners

Commissioner Tom Wall, President Commissioner Terry Stoffel, Vice President Commissioner Rob Miller

2. PLANNING STRUCTURE

This comprehensive Safety Action Plan has a planning structure, through a committee consisting of: Huntington County Commissioners, Huntington County Highway, Region 3A Development and Regional Planning Commission, and VS Engineering, charged with the oversight of the Action Plan development and implementation.

3. PROJECT PURPOSE

The purpose of this safety action plan is to characterize roadway safety problems within Huntington County and identify strategies to be implemented, aimed at reducing and eliminating serious injury and fatal crashes.

4. PROJECT NEED

Huntington County had, in a 5-year period between 2018 and 2022, 5,900 total reported crashes. Those crashes resulted in 1,125 injured people, and tragically, 41 fatalities. That makes the five-year average 8.2, and with a population of 36,662 translates into a fatality rate of 22.4 per 100,000 people on an annualized basis.

Engagement, Collaboration, and Equity

2. Engagement and Collaboration, and Equity

1. STAKEHOLDER INPUT

The Safety Action Plan Committee identified key stakeholders within the County whose experiences offer valuable perspectives. These stakeholders included public safety officials—such as law enforcement, firefighters, EMS responders, and 911 dispatchers—city and local community officials—such as the Mayor, Public Works staff, County Highway personnel, Town Managers and Superintendents, and Town Clerks—and representatives from the Indiana Department of Transportation. Meetings were held with these stakeholders to pinpoint locations of unsafe roadway conditions and develop strategies for addressing them. Members of the general public also attended these meetings and contributed to the discussions.

Common concerns raised during these meetings included stopcontrolled intersections, pedestrians walking along or crossing busy state highways, intersections with awkward or unconventional geometry, and vehicles running red lights on US 24 at high speeds.


Both stakeholders and the general public were given the opportunity to review the draft Safety Action Plan and provide feedback on the proposed improvements. This process ensured that the final plan effectively addresses the community's needs.

2. EQUITY ANALYSIS

Our Safety Team used the Climate and Economic Justice Screening Tool, developed by the White House Council on Environmental Quality, to review the demographics of Huntington County and identify disadvantaged communities potentially disproportionately affected by roadway fatalities. Two census tracts on the east side of the City of Huntington were identified as being disadvantaged. These communities are considered disadvantaged because they meet one burden threshold (Proximity to Risk Management Plan (RMP) Facilities) and the associated socioeconomic threshold (Low Income). Out of the 37 fatal crashes, five occurred within these disadvantaged areas. Our Project Scoring Matrix allocates additional points to the proposed improvements located in these areas.

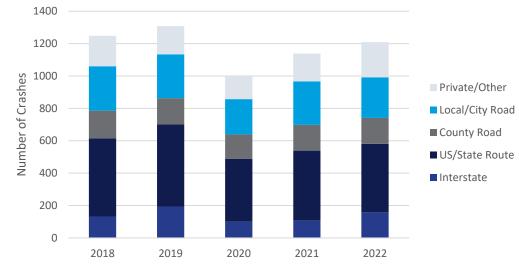
It is important to note that the demographic makeup Huntington County is 96.5% white, but the County is committed to ensuring racial equity. With a population of approximately 36,662 according to the 2020 Census, the county qualifies as a rural community, being outside of an urbanized area. Huntington County is divided into nine census tracts. While none meet the definition of "underserved", seven are classified as transportation disadvantaged according to the Office of Management and Budget's Interim Guidance for the Justice40 Initiative and Historically Disadvantaged Community designation. These seven tracts encompass 77% of the county's population. The transportation disadvantages in Huntington County impact residents' earning potential, with per capita income at 77.2% of the U.S. average, based on the U.S. Census Bureau's 2020 ACS 5-year estimates.

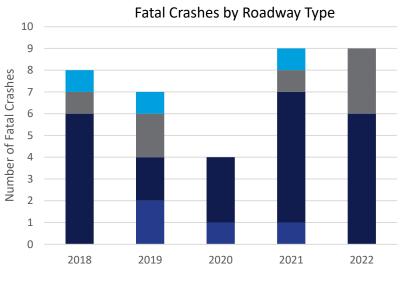
In these disadvantaged areas, busy intersections such as Market St and First St lack sufficient pedestrian facilities to ensure safe crossings. Projects should focus on protecting vulnerable users in these areas to enhance safety and promote equity for alternative forms of transportation. Improvements in these areas must be carefully planned to avoid exacerbating existing disadvantages.

Disadvantaged census tracts in Huntington County

Sight distance obstructed for drivers looking north from Division Rd at SR 9

SR 16 section with 8' eastbound and 10' westbound lane near SR 5


1. EXISTING CRASH ANALYSIS


Crash data was provided by Indiana LTAP for all roadways within Huntington County from 2018 through 2022. The data was used to determine the locations and routes with frequent and severe accidents, the manner of collisions associated with severe crashes, and the factors leading to collisions. Using these results, areas of concern can be identified and solutions for those areas can be developed.

Approximately half (49.6%) of all Huntington County crashes occurred on state-maintained highways, with the other half (50.4%) occurring on local or private roads. Locally maintained routes make up 1463 miles (88.5%) while state routes make up 190 miles (11.5%) in the county. The proportion of injury and fatal crashes is much higher on state maintained routes, on which 523 injury crashes (62.5%) and 27 fatal crashes (73.0%) occurred. The higher frequency and severity on state routes is likely due to higher traffic counts and higher design speed when compared to county and city roads. The annual number of fatal accidents on local roads never exceeded 3 in any given year, and the number of fatal accidents on state-maintained highways was never lower than 4 in any given year.

Total Crashes by Roadway Type

Roadway Type	2018	2019	2020	2021	2022	TOTAL
Interstate	132	194	100	108	158	692
US/State Route	483	507	389	431	423	2233
County Road	171	162	150	159	160	802
Local/City Road	274	271	218	269	251	1283
Private/Other	188	174	139	171	217	889
TOTAL	1248	1308	996	1138	1209	5899

	Fatal Crashes by Roadway Type								
Roadway Type	2018	2019	2020	2021	2022	TOTAL			
Interstate	0	2	1	1	0	4			
US/State Route	6	2	3	6	6	23			
County Road	1	2	0	1	3	7			
Local/City Road	1	1	0	1	0	3			
Private/Other	0	0	0	0	0	0			
TOTAL	8	7	4	9	9	37			

250

Injury Crashes by Roadway Type

Roadway Type	2018	2019	2020	2021	2022	TOTAL
Interstate	23	30	20	20	23	116
US/State Route	85	94	66	68	94	407
County Road	26	28	24	23	32	133
Local/City Road	30	35	23	26	31	145
Private/Other	4	10	3	7	12	36
TOTAL	168	197	136	144	192	837

Total Crashes by Roadway Type

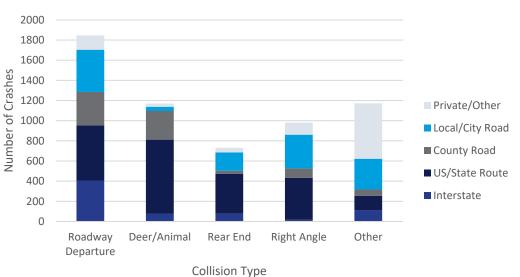
Injury Crashes by Roadway Type

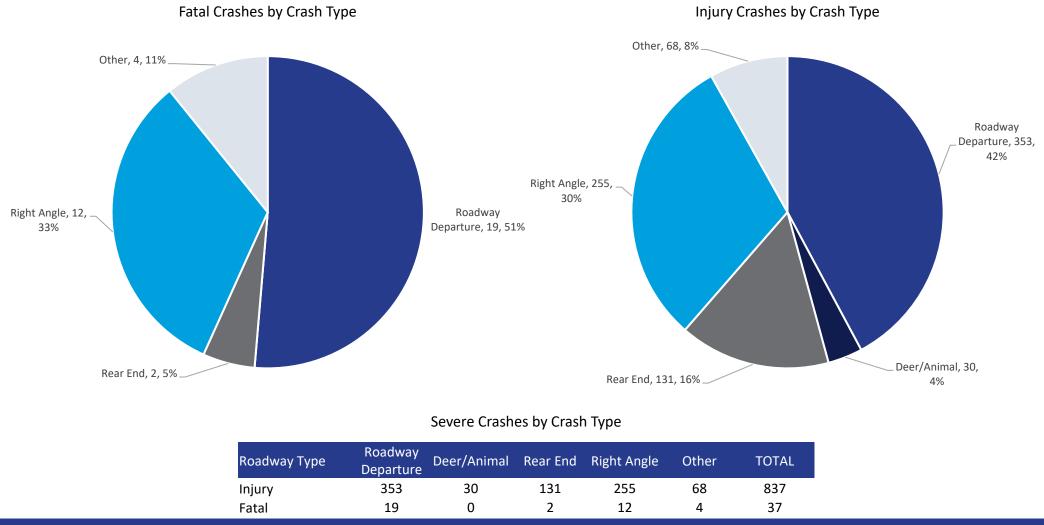
Private/Other

Local/City Road

US/State Route

County Road


Interstate

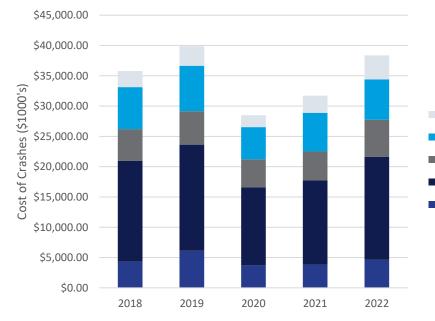

1. EXISTING CRASH ANALYSIS

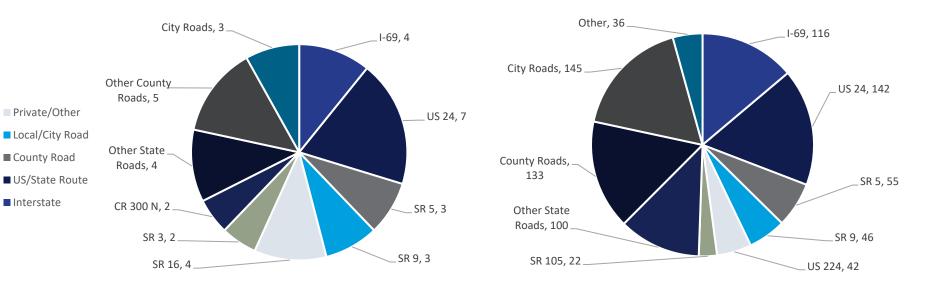
Roadway departure crashes were the most prevalent manner of collision on Huntington County highways totaling 1846 crashes, making up 31.3% of the county total. Deer/Animal collisions were the second most common with 1170 crashes, or 19.8% overall. Most deer crashes (69.4%) occurred on state routes, likely attributable to long woodside portions of US 24, US 224, and SR 5. Right angle collisions were the third most prevalent crash type, with 981 crashes, or 16.6% overall. Rear end accidents are the fourth leading collision type, totaling 731 crashes, or 12.4% overall. Roadway departure crashes are common for all state, city, and county-maintained routes. State routes are prone to each of the four leading types of collisions, which make up 91.3% of all state route crashes. County roads are more prone to departure and deer collisions, making up 616 of 802 county road crashes (76.8%). City maintained roads are more prone to departure, right angle, and rear end collisions due to increased prevalence of street parking and higher intersection density. These three crash types make up 73.0% of city crashes. Backing crashes made up 606 of the county's 5899 total crashes, though most of these crashes were contained to private roads or parking lots, with some occurring on city roads near driveways.

Together, roadway departure and right-angle collisions account for 31 of 37 fatal crashes (84%) and 608 of 837 injury crashes (72%). These crash types are prone to higher rates of injury and death due to the increased speed and direct collisions associated with roadway departure and right-angle accidents. Rear end collisions account for 12% of injury crashes, and both fatal rear end collisions involved either a motorcycle or bicycle.

Crash Types on Roadways Roadway Deer/Animal Rear End Right Angle Crasl Roadway Type TOTAL Other Departure 406 79 76 18 113 692 Interstate Number 2233 US/State Route 547 733 395 416 142 332 284 31 62 802 County Road 93 Local/City Road 419 42 183 334 305 1283 Private/Other 142 32 46 120 549 889 TOTAL 1846 1170 731 981 1171 5899

Roadway Type	Roadway Departure	Deer/Animal	Rear End	Right Angle	Other
Injury	353	30	131	255	68
Fatal	19	0	2	12	4


SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN


Crash Types on Roadways

1. EXISTING CRASH ANALYSIS

The estimated cost of crashes for the period 2018-2022 was calculated using chapter 50 of the Indiana Design Manual (Economic Analysis). Using costs of \$133,050 for fatal and injury crashes and \$11,530 for property damage only (PDO) crashes, the estimated crash cost for Huntington County was determined to be \$174,228,980 in 2024 dollars. State maintained routes contributed to \$100,563,630 (57.7%) of that total. Local/City roads made up \$32,779,090 and county roads made up \$26,260,520 in damages.

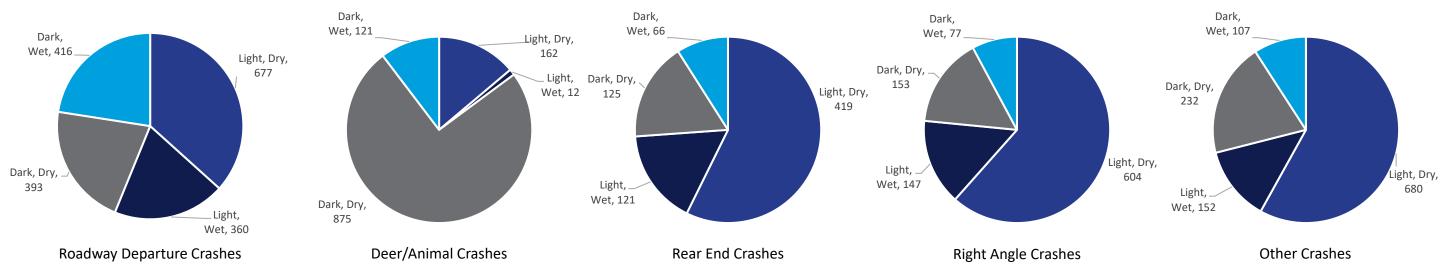
The crash data was analyzed further to determine which routes were contributing to the fatal and injury crash totals. US 24 has the highest fatal and injury crash total of any road in the county with 7 fatal and 142 injury crashes. US 24 is the primary thoroughfare between Wabash, Huntington, and Fort Wayne. US 24 is a rural 4 lane divided highway with a typical speed limit of 60 mph. The road contains a high number of intersections, offering more opportunities for traffic conflicts. I-69 is second for fatal and injury accidents with 4 fatal and 116 injury crashes. I-69 has twice the vehicular volume of US-24, however due to its lack of intersections and increased design standards there are less conflict points for interstate travelers to navigate. SR 16 is tied with I-69 with 4 fatal crashes despite having less than 1% of I-69's daily vehicle miles traveled (VMT). SR 16 has the lowest design standard of any state-maintained highway in the county including a 30-mph curve near Clear Creek that experienced 2 fatal crashes. SR 5 had 3 fatal crashes and 55 injury crashes, and SR 9 had 3 fatal crashes and 46 injury crashes. SR 9 has higher traffic volume than SR 5, though in places SR 9 is built to a higher design standard. SR 9 has also been improved in some locations during the latter years of the study period to improve safety. SR 5 has an increased number of crashes near Clear Creek and Bracken Rd where the road is narrower and contains sharp curves.

Fatal Crashes by Route

Route	Fatal
I-69	4
US 24	7
SR 5	3
SR 9	3
SR 16	4
SR 3	2
CR 300 N	2
Other State Roads	4
Other County Roads	5
City Roads	3
TOTAL	37

Cost of Crashes by Roadway Type (\$1000s)

Roadway Type	2018	2019	2020	2021	2022	TOTAL
Interstate	\$4,317.03	\$6,125.62	\$3,705.00	\$3,797.25	\$4,616.84	\$22,561.73
US/State Route	\$16,627.70	\$17,512.04	\$12,870.37	\$13,962.27	\$17,029.51	\$78,001.89
County Road	\$5,252.81	\$5 <i>,</i> 513.59	\$4,646.11	\$4,749.89	\$6,098.13	\$26,260.52
Local/City Road	\$6,926.58	\$7,499.59	\$5 <i>,</i> 308.70	\$6,382.85	\$6,661.37	\$32,779.09
Private/Other	\$2 <i>,</i> 653.90	\$3,221.58	\$1 <i>,</i> 967.37	\$2,822.43	\$3 <i>,</i> 960.46	\$14,625.74
TOTAL	\$35,778.03	\$39,872.42	\$28,497.54	\$31,714.69	\$38,366.30	\$174,228.98



Injury Crashes by Route

1. EXISTING CRASH ANALYSIS

Part of the crash analysis examined the weather conditions at the time of crash. 77.9% of crashes occurred in dry conditions, and 71.1% of crashes occurred under daylight. Right angle, rear end, and other crashes follow this pattern closely, with 73-77% of crashes under daylight and dry conditions. Roadway departure and deer collisions deviate from this pattern, with only 56.8% of departure crashes in daylight and 42.0% occurring in wet conditions. Departures are more likely to occur in dark or wet conditions as the roadway boundaries become obscured by water and glare from the sun or headlights. Deer crashes were uncommon during daylight hours, with 85.1% of deer collisions occurring in the dark. During daylight hours, 23 of 37 (62.2%) fatal crashes occurred, while 6 fatal crashes occurred during wet conditions. Injury crashes follow the same trend as fatal crashes, except wet conditions make up a greater percentage (12.9%) of daylight injury crashes.

Roadway Roadway Class Deer/Animal Rear En Departure 677 162 Light, Dry 419 Light, Wet 360 12 121 Dark, Dry 393 875 125 121 66 Dark, Wet 416 TOTAL 1846 1170 731

The highest contributing factor of collision in Huntington County was animals or objects in the road, with 1323 (22.4%) crashes. While the most prevalent, animal/object collisions are only 27% as likely to cause injury to vehicle occupants, and none of these crashes have resulted in human death. The leading human-caused factor was failure to yield right of way, leading to 617 (10.5%) accidents. Drivers veering left of center or running off the road to the right led to 13 fatal crashes (35.1%) despite making up just 562 (9.5%) of the total 5899 crashes in the county. Drivers running off the road or into an adjacent lane led to potential departure crashes including sideswipe and head-on collisions with other vehicles or roadside structures which have increased chances of death or serious injury.

Most accidents in Huntington County do not occur at intersections, where only 24.5% of accidents occur. Four way and T-intersections account for 22.1% of all accidents, 29.7% of fatal accidents, and 31.8% of injury accidents. Of the accidents that occurred at intersections, 85.7% of fatal crashes and 45.2% of injury crashes occurred at stop-controlled intersections, which make up 42.4% of intersections in the county. Signalized intersections make up 35% of intersection crashes, with 14.3% of intersection fatal crashes and 36.5% of intersection injury crashes. A potential explanation to the higher rate of fatal crashes to injury crashes at stop signs compared to traffic signals could be due to the prevailing use of stop control in rural areas, as county and state routes make up 91.9% of fatal crashes due to increased crash energy from higher travel speeds.

Roadway Junction Type	Total	Fatal	Injury	% Total	% Fatal	% Injury
No Junction	4451	26	547	75.5%	70.3%	65.4%
Four-Way Intersection	844	9	202	14.3%	24.3%	24.1%
T-intersection	460	2	64	7.8%	5.4%	7.6%
Other	144	0	24	2.4%	0.0%	2.9%

Traffic Control	Total	Fatal	Injury	%Total	%Fatal	%Injury
Traffic Signal	380	1	80	6.4%	2.7%	9.6%
None	4787	30	618	81.1%	81.1%	73.8%
Stop Sign	471	6	99	8.0%	16.2%	11.8%
Other	261	0	40	4.4%	0.0%	4.8%

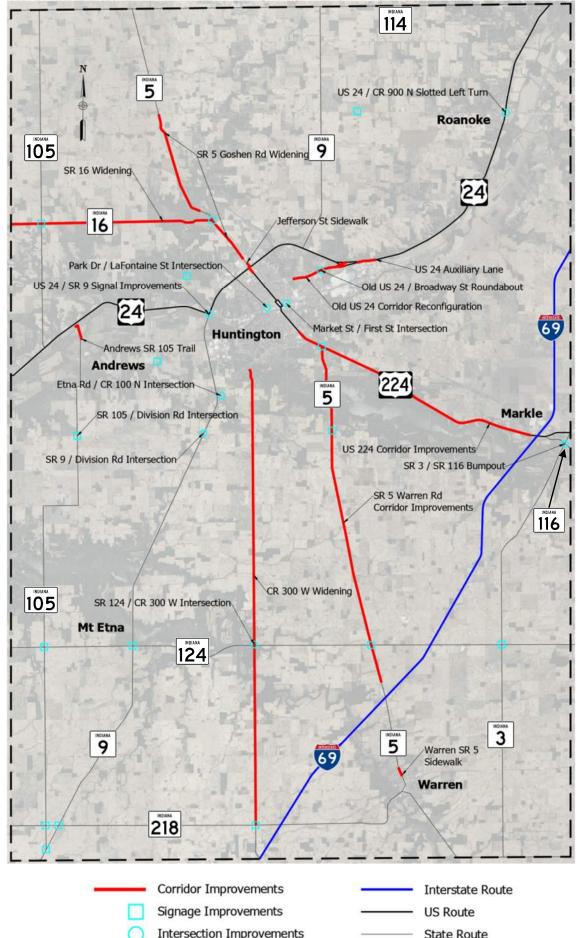
Light and Surface Conditions of Crashes

nd	Right Angle	Other	TOTAL
	604	680	2542
	147	152	792
	153	232	1778
	77	107	787
	981	1171	5899

Crashes by Junction Type

Crashes by Traffic Control Type

1. PROJECT IDENTIFICATION


The projects selected for improvements through the SS4A grant program will be identified through a data-based selection process that includes county crash data, evidence of effectiveness from noteworthy projects, stakeholder input, and equity considerations. Fatal and injury crash rates are given the highest consideration when weighing priority for projects in the action plan, as well as any future projects following the completion of projects included in the safety action plan. These projects will address the safety problems described in the Action Plan. The strategies and countermeasures to be implemented should focus on a Safe System Approach and effective interventions while also considering multidisciplinary activities.

2. PROJECTS SELECTED FOR IMPROVEMENTS

The following sections contain the areas identified to receive improvements. Each project page includes the project background, crash history (where applicable), existing conditions, and proposed short and/or long-term improvements. Smaller scale systemic improvements are not included in the dedicated slides. A map of the project areas selected as part of the action plan is on the right side of this page. A detailed scoring matrix and selection criteria can be found in Appendix B.

Selected Projects

Project Name	Project Time Range for Deployment	Project Jurisdiction and Agencies	Tier / Prioritization
Division Rd / SR 105 Intersection	Short	Huntington County Highway Department, INDOT	1
SR 5 Warren Rd Corridor Improvements	Mid	INDOT	1
US 224 Corridor Improvements	Mid/Long	INDOT	1
SR 16 Widening	Short/Long	INDOT	1
Old 24 Corridor Reconfiguration	Long	City of Huntington, INDOT	1
SR 9 / Division Rd Intersection	Short/Long	Huntington County Highway Department, INDOT	1
Low-Cost Signage Improvements	Short/Mid	Huntington County Highway Department, City of Huntington, INDOT	1
Park Dr / LaFontaine St Intersection	Mid	City of Huntington	2
US 24 / SR 9 Signal Improvements	Short	INDOT	2
Etna Rd / CR 100 N Intersection	Long	Huntington County Highway Department	2
US 24 Auxiliary Lane	Long	INDOT	2
Market St / First St Intersection	Short/Long	City of Huntington	2
SR 5 Goshen Rd Widening	Long	INDOT	2
US 24 / CR 900 N Slotted Left Turn	Mid	INDOT	3
SR 3 / SR 116 Bumpout	Mid	INDOT, Town of Markle	3
CR 300 W Widening	Long	Huntington County Highway Department, INDOT	3
Jefferson St Sidewalk	Mid	INDOT, City of Huntington	3
Andrews SR 105 Trail	Mid	INDOT, Town of Andrews	3
Warren SR 5 Sidewalk	Mid	INDOT, Town of Warren	3

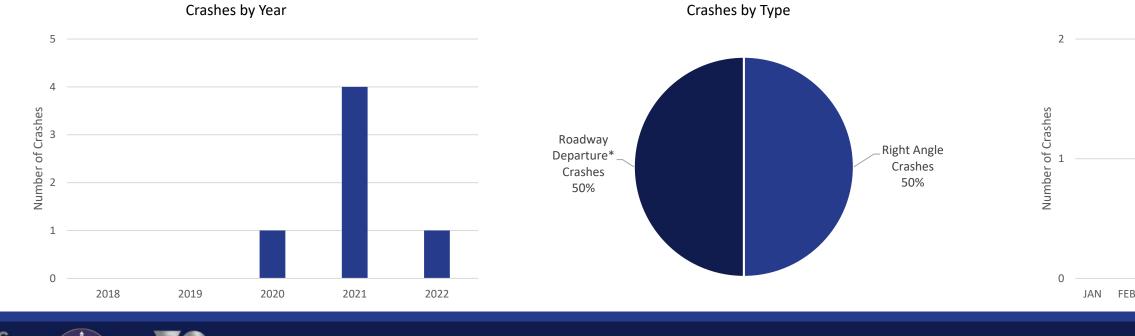
The projects will be prioritized into short term and long-term improvements and strategies for infrastructure, behavioral, and operational safety.

Several projects were implemented in Huntington County in the last 2 years of the crash study. These include the reconfiguration of the SR 9 / CR 600 N / Broadway St intersection, slotted left turns on US 24 at SR 9, and flashing stop signs at the CR 300 N / CR 200 E intersection. These projects are early examples that can be used to preview the effectiveness of proven safety countermeasures as they are implemented in Huntington County.

Intersection Improvements State Route

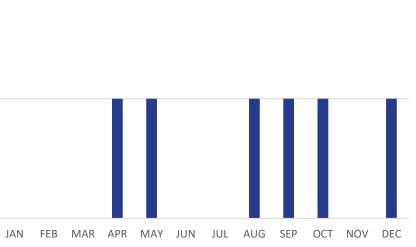
3. SR 105 / DIVISION RD INTERSECTION

The purpose of the SR 105 / Division Road intersection improvements is to prevent right angle collisions at the intersection. A crash analysis from 2018-2022 revealed 6 crashes occurred at the intersection during that period. Of those, 1 crash resulted in a fatality and 4 crashes resulted in injury. There were 3 right angle crashes, resulting in 1 fatal crash and 2 injury crashes. An additional fatal crash was recorded after the study period on July 29, 2024, resulting in 1 fatality and 3 injuries. Both fatal crashes, as well as two injury crashes, occurred during months when crops were high, limiting sightlines. Stakeholders have expressed concerns at this intersection of increasing traffic volumes entering Huntington County on Division Road from Wabash County.


The existing intersection is two-way stop controlled, with SR 105 as the primary route. The roads meet at a right angle, and there are no auxiliary lanes present at the intersection. The only signage at the intersection are two stop signs on Division Road (one for each approach) and a name plaque for Division Rd.

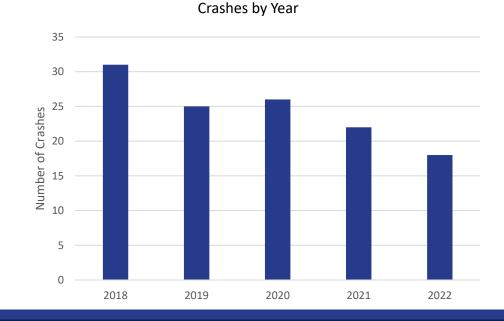
The proposed improvements to the SR 105 / Division Road intersection are to convert the intersection from two-way stop controlled to allway stop controlled and add additional signage along both SR 105 and Division Road. Signage improvements would consist of implementing upsized stop signs, stop ahead signs with name plaques, doubled-up signage, and painted stop bars. Right of way acquisition is also considered to improve sightlines at the intersection. The improvements proposed at the SR 105 / Division Road intersection will improve sight distance, awareness of the intersection hazards, and reduce the speed of vehicles entering the intersection to limit the occurrence of high-energy right-angle collisions.

Tune of Collision	5-yr Total	5-yr Total Crashes % Crashes		Number of Crashes per Year				
Type of Collision	Crashes	% Crasnes	2018	2019	2020	2021	2022	
Total Crashes	6	-	0	0	1	4	1	
Right Angle Crashes	3	50%	0	0	0	3	0	
Roadway Departure* Crashes	3	50%	0	0	1	1	1	
Fatal Crashes	1	17%	0	0	0	1	0	
Injury Crashes	4	67%	0	0	1	2	1	
PDO Crashes	1	17%	0	0	0	1	0	


*includes Run Off Road, Head-On and Sideswipe Crashes

View looking south on SR 105

View looking east on Division Rd

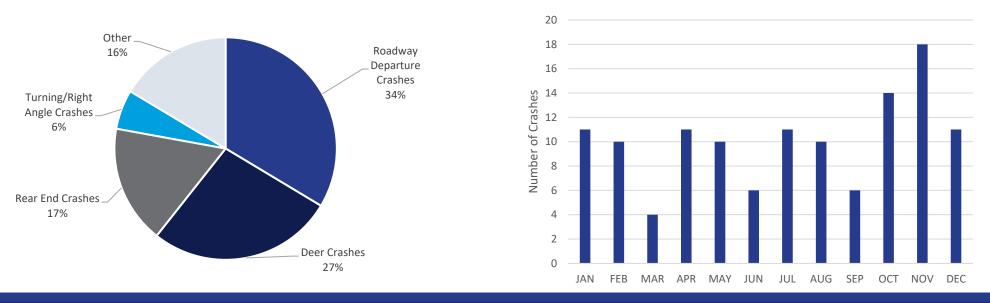

Crashes by Month

4. SR 5 WARREN RD CORRIDOR IMPROVEMENTS

The purpose of the milled corrugations on the SR 5 corridor is to improve the safety of motorists and prevent fatal departure related accidents. The studied corridor includes portions of SR 5 between CR 700 S and US 224, totaling 9.8 miles. A crash analysis for 2018-2022 determined that there were 122 crashes on SR 5, with 3 resulting in fatalities and 25 resulting in injuries. Roadway departure crashes were the leading manner of collision, with 41 accidents. Departure related crashes were responsible for all 3 fatal accidents on SR 5.

The existing roadway consists of 12' travel lanes with 2'-3' shoulders in each direction for a total width of 28'. This width meets INDOT's rural arterial standards and is adequate for a two-lane facility. SR 5 maintains right of way at all intersections except for US 224 and SR 124 (both AWSC). The posted speed limit is 55 mph and there is little elevation change or curvature along the corridor. There are no rumble stripes to prevent roadway departure incidents.

The proposed improvements to SR 5 are to add edge and centerline rumble stripes from US 224 south to the commercial area at the I-69 interchange. Rumble stripes are a countermeasure to roadway departure incidents, which are responsible for all 3 fatal crashes and are the leading manner of collision on SR 5. A potential addition to the corrugations is to add buzz strips on the approaches to the all-way stop-controlled intersections (US 224, SR 124). There were 11 accidents on SR 5 at the SR 124 intersection and 14 accidents at the US 224 intersection; buzz strips would increase awareness of the need to stop at and safely navigate these intersections. Additional stakeholder concern was expressed at the intersection with CR 100 S, where drivers hydroplane on the curve. This section would receive High Friction Surface Treatment (HFST) to lessen the risk of hydroplaning in wet conditions.



Type of Collision	5-yr Total	% Crashes		Number of Crashes per Year						
Type of Collision	Crashes	% Crasnes	2018	2019	2020	2021	2022			
Total Crashes	122	-	31	25	26	22	18			
Roadway Departure Crashes	41	34%	14	5	12	4	6			
Deer Crashes	33	27%	8	10	2	8	5			
Rear End Crashes	21	17%	4	3	6	4	4			
Turning/Right Angle Crashes	7	6%	2	0	4	1	0			
Other	20	16%	3	7	2	5	3			
Fatal Crashes	3	2%	0	1	1	0	1			
Injury Crashes	25	19%	3	8	5	4	5			
PDO Crashes	97	79%	28	16	20	18	12			

Sinusoidal centerline rumble stripes

*includes Run Off Road, Head-On and Sideswipe Crashes

Crashes by Type

Existing section of SR 5 with 12' travel lanes and 2'-3' shoulders

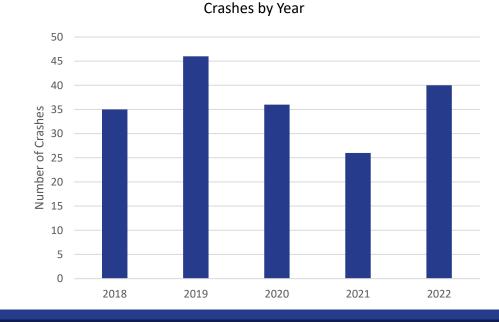
Crashes by Month

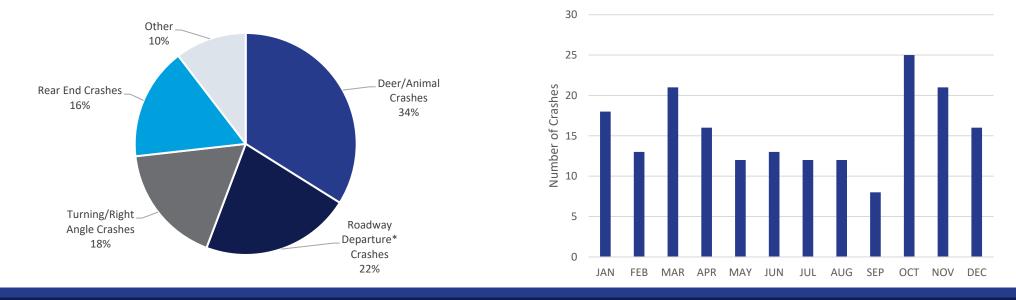
5. US 224 CORRIDOR IMPROVEMENTS

The purpose of the US 224 improvements is to increase the level of safety for motorists, residents, and businesses along the US 224 corridor from Huntington to Markle. A crash analysis was performed for 2018-2022 to determine the causes of accidents along the corridor. The analysis found 183 crashes along the 8-mile segment, with 27 resulting in injuries. The leading cause of accidents were deer, accounting for 62 crashes (34%). The leading non-deer crash type were roadway departure crashes with 40 (22%) crashes in five years. Turning/Right Angle crashes accounted for 32 accidents (17%).

The corridor under consideration consists of US 224 between Briant Street in Huntington and SR 116 in Markle, for a total distance of 8 miles. There are 19 intersections and an interchange with I-69 in the 8-mile stretch. The existing cross section of US 224 has two 12' travel lanes and 2'-3' outside shoulders. US 224 widens to include a center turn lane between Joe St and Briant St as well as in the vicinity of the I-69 interchange. These sections meet the geometric requirements for a rural arterial.

Traffic at US 224 / SR 5 all-way stop-controlled intersection with flashing overhead beacons

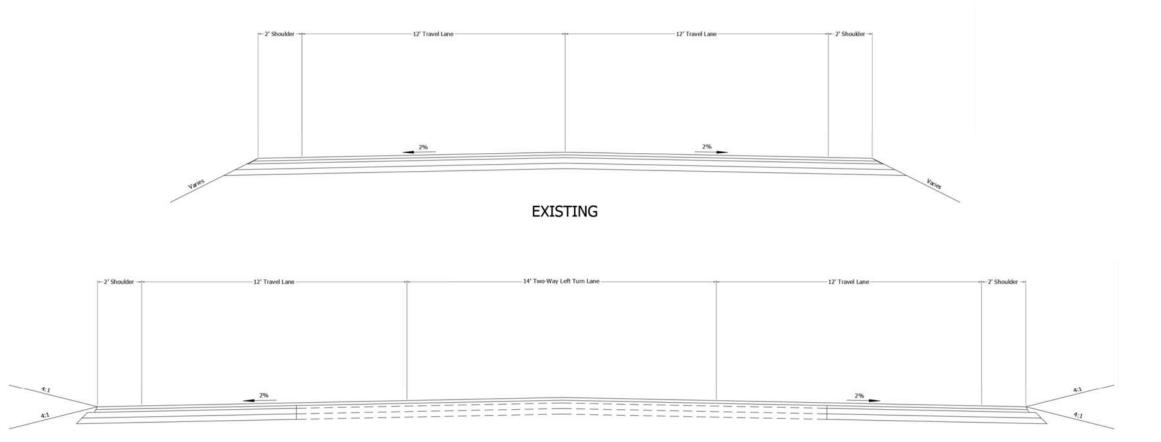



US 224 section view with 12' travel lanes and 2'-3' shoulders

Turne of Collision	5-yr Total	9/ Crachoo	Number of Crashes per Year						
Type of Collision	Crashes	% Crashes	2018	2019	2020	2021	2022		
Total Crashes	183	-	35	46	36	26	40		
Deer/Animal Crashes	62	34%	10	19	11	4	18		
Roadway Departure* Crashes	40	22%	5	6	11	3	15		
Turning/Right Angle Crashes	32	17%	14	7	4	6	1		
Rear End Crashes	30	16%	5	8	8	7	2		
Other	19	10%	1	6	2	6	4		
Fatal Crashes	0	0%	0	0	0	0	0		
Injury Crashes	27	15%	5	7	3	6	6		
PDO Crashes	156	85%	33	39	33	21	34		

*includes Run Off Road, Head-On and Sideswipe Crashes

Crashes by Type


SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

View of US 224 looking west from the entrance to American Legion Post 85

Crashes by Month

5. US 224 CORRIDOR IMPROVEMENTS

The proposed improvements will target right angle and departure-related crashes. The center turn lane between Briant Rd and Joe Street would be extended 800' to the east, terminating at the American Legion Post. This extension aims to reduce right angle and rear end accidents occurring when motorists turn into or out of businesses on the east side of Huntington. In the 800' between the end of the existing turn lane and the American Legion Post there were 17 recorded accidents, most of which were right angle accidents. The center turn lane will allow motorists more space and time to judge their turns and reduce accidents.

PROPOSED

Proposed US 224 center turn lane improvement at Joe St intersection

5. US 224 CORRIDOR IMPROVEMENTS

The only intersection between Briant St and SR 116 that is not free flowing for US 224 is the all-way stop at SR 5. There were 14 crashes at this intersection during the study period, with most accidents due to drivers being unable to stop safely at the intersection. The proposed improvement is to add buzz strips to the mainline pavement of US 224 to alert drivers of the upcoming stop sign. The intersection already has overhead flashing warning beacons. This should reduce the number of accidents due to short stopping distance by providing adequate advance warning of the intersection.

Aside from deer, the remainder of the US 224 corridor to I-69 experiences mostly departure related crashes. These accidents are primarily caused due to the combination of sharp curves and adjacent intersections. These curves are not delineated with any markers, and intersections are not marked with advance intersection warning signs. There are three elements to the proposed improvements for the corridor. First, edge and center line corrugations will be added to alert departing drivers. Second, curves will be delineated with curve delineation markers to warn drivers of curves around the wooded areas with visual obstruction. The third element is the addition of advance warning signs for intersections along US 224. These will alert motorists of the intersections along curves which are difficult for motorists to spot while keeping their vehicles in their respective lanes. The elements listed are low-cost fixes to a high crash corridor that will reduce the number of head on collisions, sideswipes, and instances of driving off the road.

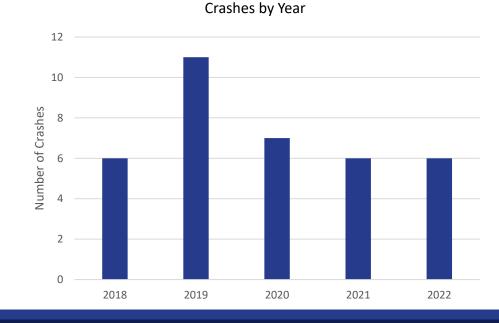
Example curve intersection warning signs

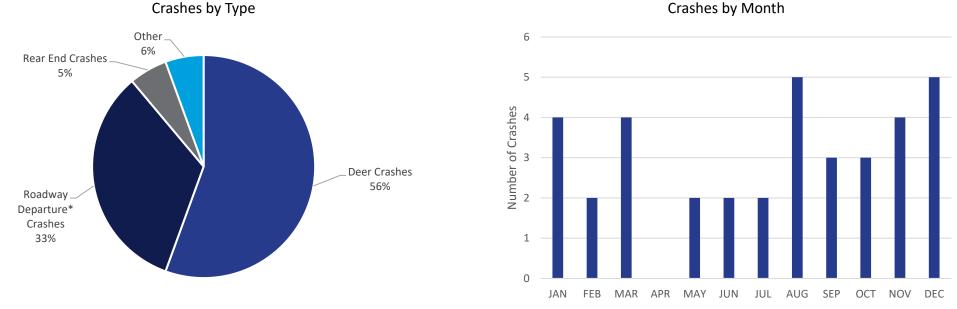
Summary map of US 224 corridor improvements. Example curve delineators on US 224 (inset)

6. SR 16 WIDENING

The purpose of the SR 16 widening project is to prevent future fatalities involving motor vehicles on SR 16. A crash analysis of highways in Huntington County from 2018-2022 determined SR 16 to be the most dangerous road in the county by fatalities. The 5.8-mile segment of SR 16 experienced 36 crashes, 4 of which were fatal accidents killing a total of 5 people. Of the 36 crashes, 20 involved deer, and 12 involved departure related incidents. 3 of the 4 fatal accidents were a result of running off the road or into an oncoming lane.

The existing SR 16 roadway consists of one 9' wide lane in each direction with no shoulders. Field measurements determined locations east of CR 600W where the striped eastbound lane width was 7.5'-8' and the striped westbound lane width was 10'. The road traverses hilly terrain, and only 1400' of the 5.8 miles in Huntington County are suitable for passing from either side. In the area near Clear Creek there is a series of sharp horizontal curves where two of the fatalities occurred. These curves have advisory speeds of 30 mph, and the corridor has a posted speed limit of 55 mph. SR 16 maintains right-of-way at all intersections except for SR 5 (two-way stop controlled) and SR 105 (all way stop controlled).


estbound curve on SR 16 where two fatal crashes occurred



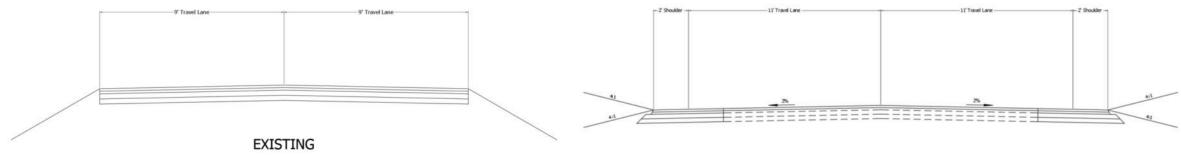
Narrow section view of SR 16 with 9' travel lanes

Type of Collision	5-yr Total	5-yr Total % Crashes		Number of Crashes per Year						
Type of Collision	Crashes	% Crusiles	2018	2019	2020	2021	2022			
Total Crashes	36	-	6	11	7	6	6			
Deer Crashes	20	56%	3	7	5	3	2			
Roadway Departure* Crashes	12	33%	2	3	2	2	3			
Rear End Crashes	2	6%	1	0	0	0	1			
Other	2	6%	0	1	0	1	0			
Fatal Crashes	4	11%	2	0	0	0	2			
Injury Crashes	2	6%	0	0	0	1	1			
PDO Crashes	30	83%	4	11	7	5	3			

*includes Run Off Road, Head-On and Sideswipe Crashes

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

Semi truck left of center when making turn on SR 16 eastbound curve


Crashes by Month


19

6. SR 16 WIDENING

The proposed improvements include widening SR 16 to include an 11' travel lane and 2' shoulder in each direction, for a total width of 26'. Center and edge line corrugations will be added as a warning measure for lane departures. The current design criteria for a rural collector with 400-3,000 vehicles per day (vpd) requires a minimum lane width of 11', and for segments over 1,000 vpd a 2' paved shoulder is required. The eastern segment of SR 16 near Clear Creek is above 1,000 vpd and the western segment averages 700-800 vpd. The project will also involve realigning the eastern curve near Clear Creek to a 50-mph design speed, matching the western curve. These improvements are expected to increase the forgiveness of the roadway and prevent future departure related accidents, which have a 25% fatality rate on SR 16.

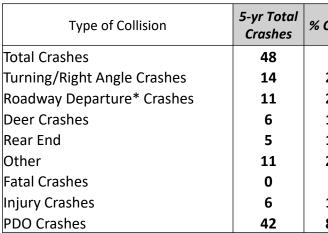
There are short term alternatives that can be applied to improve safety of the curve near Clear Creek. These include clearing trees from the clear zone to allow more visibility and lessen the number of trees to crash into, adding a guardrail to the outer edge of the curve, and applying high-friction surface treatment (HFST) to the roadway. The curve itself could also be realigned to a higher design speed independent of a county-wide widening project.

Plan view of proposed widening and curve realignment of SR 16 to include 11' travel lanes and 2' shoulders

Plan view of western limits of SR 16 widening at Wabash County line

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

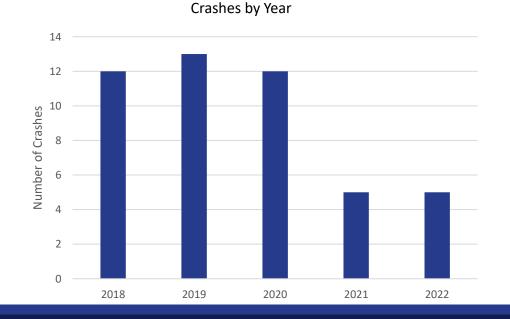
PROPOSED

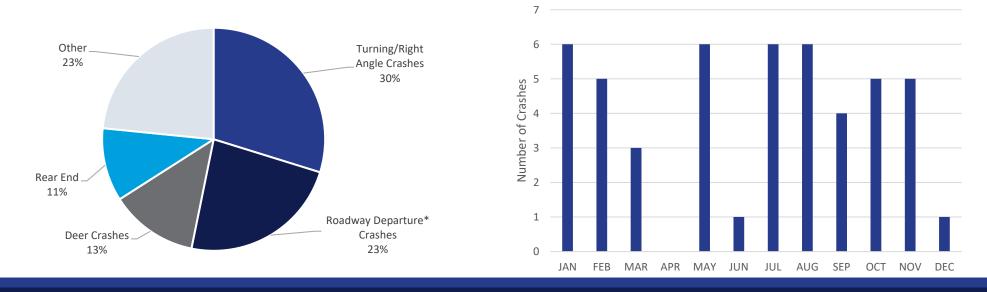

Plan view of proposed short-term improvements to SR 16 including added guardrail, HFST, and tree removal

Plan view of eastern limits of SR 16 widening at SR 5 (SR 5 widening shown)


7. OLD 24 CORRIDOR RECONFIGURATION

The purpose of the Old US 24 improvements is to increase the safety level of the road for motorists and non-motorized trail users. A crash analysis was performed for the period 2018-2022 to determine the type of improvements necessary to improve safety. The half mile corridor of Old US 24 between US 24 and First street experienced 48 crashes in the five-year period, with 6 resulting in injuries. Right angle and Departure crashes accounted for 25 of the 48 accidents reported.

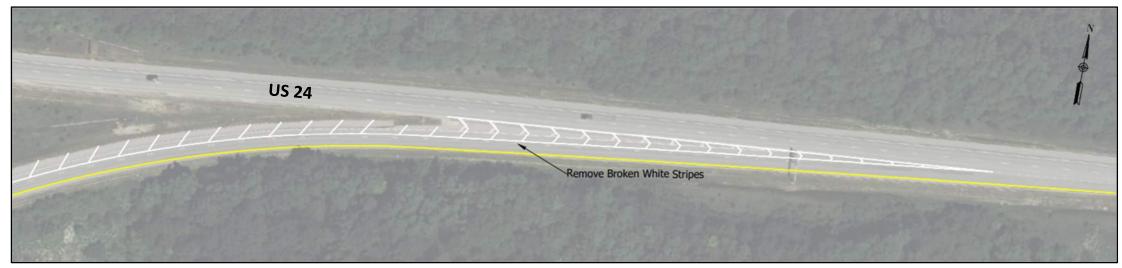

The existing Old US 24 roadway consists of the former multilane divided highway alignment of US 24. There are two westbound travel lanes with a 10' shoulder, separated from the eastbound lanes by a grass median. The eastbound lanes consist of a single travel lane with frequent auxiliary lanes for turning movements. The eastbound direction was reconfigured from 2 lanes with a 10' shoulder in 2018 to accommodate the new trail on the south side of the roadway. The westbound lanes are formed at a left-hand exit from US 24 and approach the Broadway St intersection from the east. The speed limit on US 24 is 55 mph, and on Old 24 this speed drops to 45 mph. The Broadway Street intersection is controlled by an all-way stop with flashing red lights. The westbound lanes continue past the intersection with Old SR 9 and ultimately split into Stults Rd and First St.


*includes Run Off Road, Head-On and Sideswipe Crashes

View from westbound left turn lane on Old 24 at Broadway

Crashes by Type

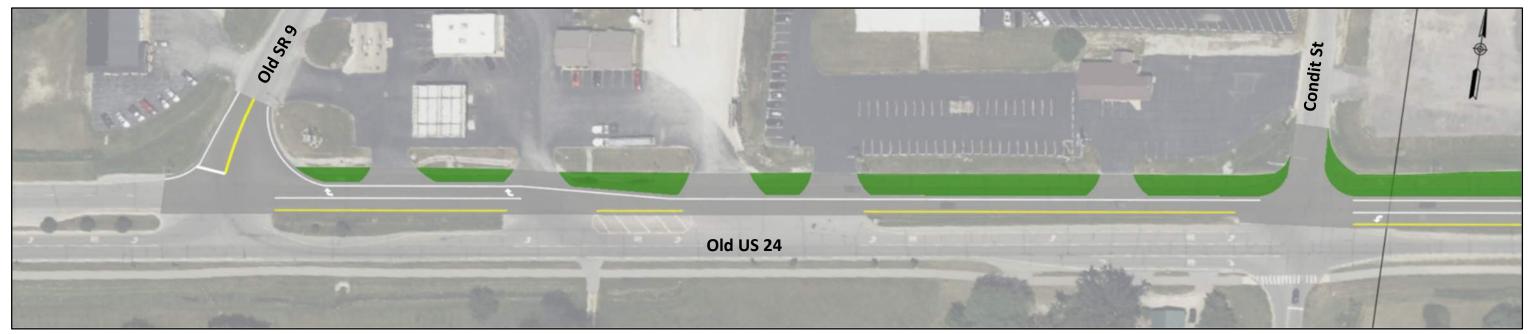
SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN


Existing westbound section with two 12' travel lanes and 10' outside shoulder

Crashes	Number of Crashes per Year									
crasnes	2018	2019	2020	2021	2022					
-	12	13	12	5	5					
29%	5	4	4	0	1					
23%	0	5	4	1	1					
13%	2	0	1	1	2					
10%	1	1	2	1	0					
23%	4	3	1	2	1					
0%	0	0	0	0	0					
13%	1	1	3	0	1					
88%	11	12	9	5	4					

Crashes by Month

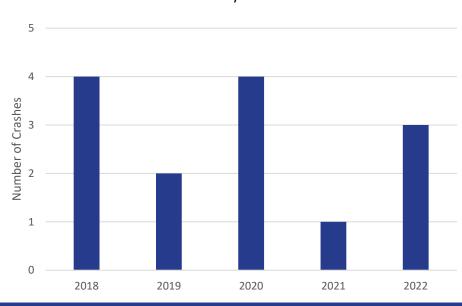
7. OLD 24 CORRIDOR RECONFIGURATION

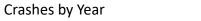

The improvements to the Old US 24 corridor will make the westbound lanes reflect the eastbound lanes, with the road reconfigured to have one through lane with auxiliary lanes for turning movements. This will involve removing pavement on city-maintained road and striping gores onto state-maintained road to reduce the width from two lanes to one lane in each direction. Existing traffic counts on Old US 24 are sufficiently low to allow for a dieting of the road. The objective of dieting the road is to allow the road to better reflect a city street rather than a rural highway through context sensitive design. By shrinking the width to look like a city road, drivers will be less likely to travel at high rates of speed and will pay more attention to motor vehicles on cross streets and driveway approaches. This alternative also comes with the added benefit of reducing future maintenance costs as there will be less road that needs to be maintained. Stop signs on Old 24 at Broadway St should be replaced with larger signs, and the speed limit 45 signs should be doubled and largened on the east approach.

Proposed striped gore area on existing two-lane ramp to reduce to one 16' ramp lane

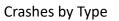
Decreased footprint of Broadway St / Old 24 intersection

Plan view of proposed reconfiguration of Old US 24 between Old SR 9 and Condit St

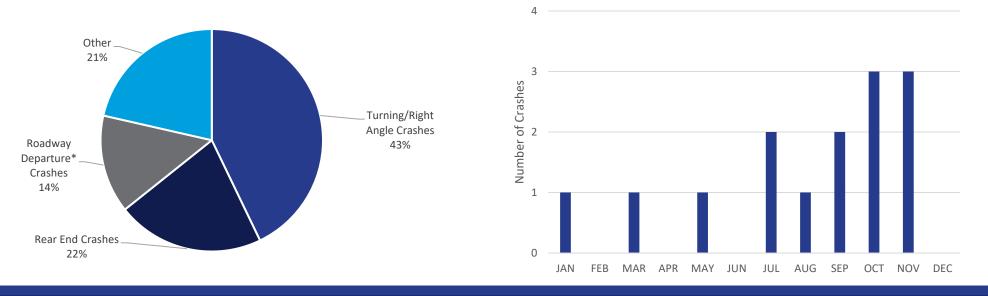


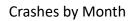

7. OLD 24 CORRIDOR RECONFIGURATION

A potential alternative for this corridor is to convert the Broadway St intersection from an all-way stop to a roundabout. The existing intersection is wide and contains four lanes on the westbound approach, leading to confusion on whose turn it is at the intersection. Additionally, as the westbound roadway enters from US 24 there have been two instances of drivers blowing through the stop sign at high-speed causing right angle crashes with injuries. The implementation of a roundabout would reduce the chances of right-angle collisions and act as a transition from highway to city street. The trail that currently dead ends into the intersection would be able to intersect Broadway St south of the roundabout, with a refuge island between lanes. This would allow safer crossing of the road when a future trail extension is built to the east or south.


Tune of Collision	5-yr Total	% Crashes	Number of Crashes per Year						
Type of Collision	Crashes	ishes [%] Crushes	2018	2019	2020	2021	2022		
Total Crashes	14	-	4	2	4	1	3		
Turning/Right Angle Crashes	6	43%	2	1	2	0	1		
Rear End Crashes	3	21%	0	0	2	0	1		
Roadway Departure* Crashes	2	14%	1	1	0	0	0		
Other	3	21%	1	0	0	1	1		
Fatal Crashes	0	0%	0	0	0	0	0		
Injury Crashes	2	14%	0	0	2	0	0		
PDO Crashes	12	86%	4	2	2	1	3		

*includes Run Off Road, Head-On and Sideswipe Crashes



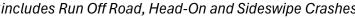


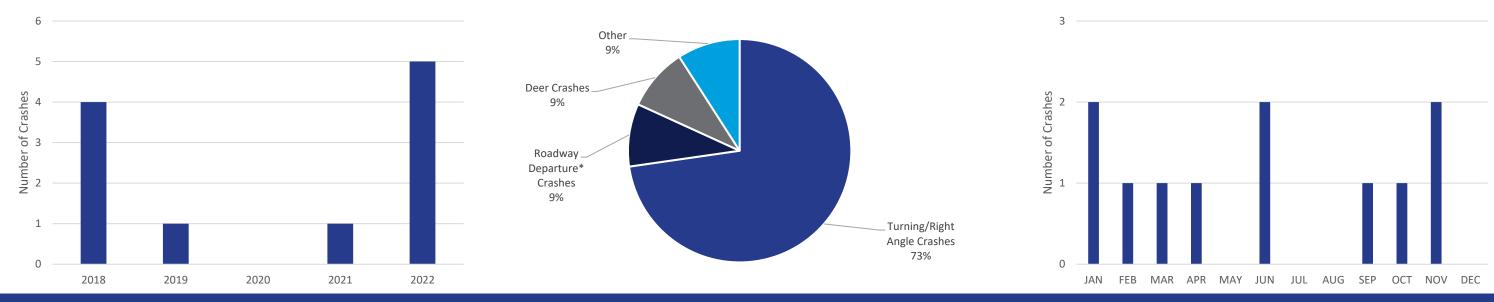
8. SR 9 / DIVISION RD INTERSECTION

The purpose of the SR 9 / Division Road intersection improvements is to prevent right angle collisions at the intersection. A crash analysis from 2018-2022 revealed 11 crashes occurred at the intersection during that period. Of those, 1 crash resulted in a fatality and 4 crashes resulted in injury. There were 8 right angle crashes, with 7 of those resulting from a driver on Division Road crossing over the median. Right angle collisions were the source of each fatality and injury.

The existing intersection is skewed 66 degrees with SR 9 as the primary route and Division Rd as the secondary route. SR 9 is a multilane divided highway with a speed limit of 60 mph, and Division Rd is a two-lane paved road with a speed limit of 55 mph. The west approach of Division Rd emerges from a wooded area, and partially blocks sightlines of SR 9 (7 of 9 multivehicle collisions involved vehicles from the west approach). The space between the north and southbound lanes on SR 9 is 48' at the median crossover, and there are no left turn lanes on SR 9.

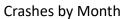
Crashes by Year

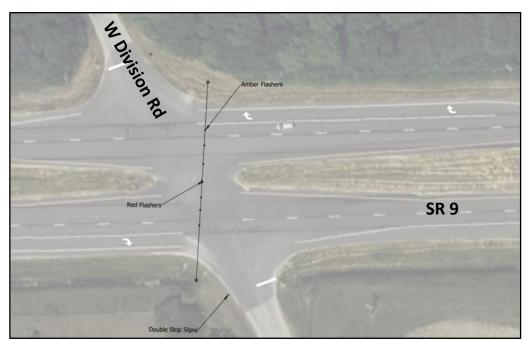


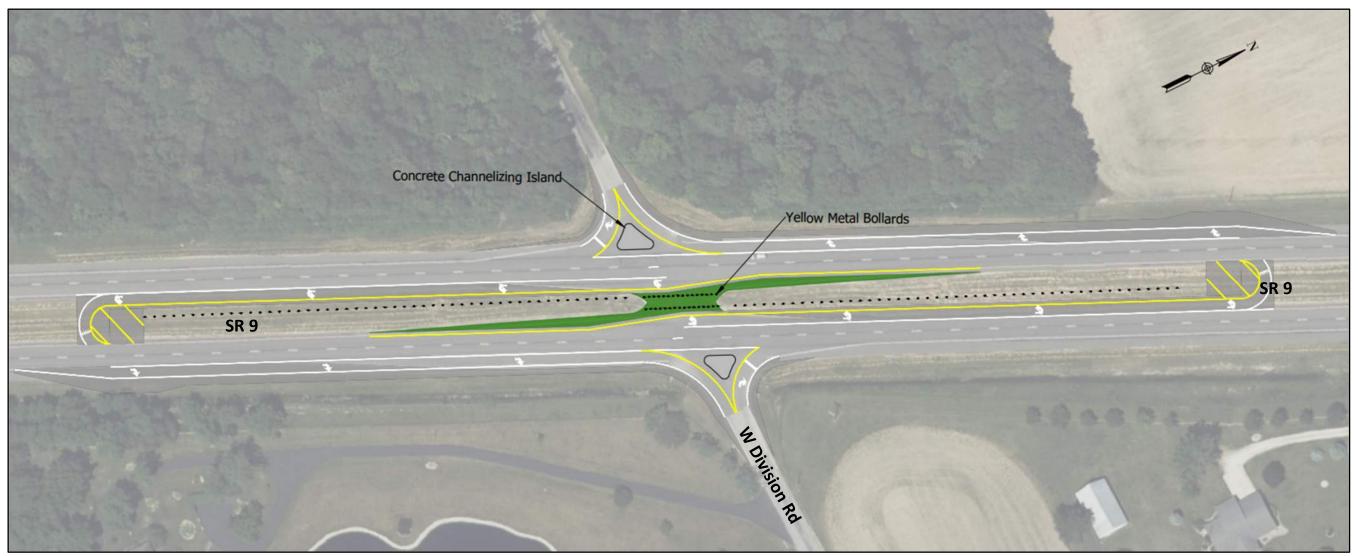

Overhead plan view of existing SR 9 / Division Rd intersection

	Type of Collision	5-yr Total	% Craches	Number of Crashes per Year					
	Type of Collision	Crashes	% Crashes	2018	2019	2020	2021	2022	
	Total Crashes	11	-	4	1	0	1	5	
Sample of the second second second	Turning/Right Angle Crashes	8	73%	3	0	0	1	4	
	Roadway Departure* Crashes	1	9%	0	0	0	0	1	
	Deer Crashes	1	9%	1	0	0	0	0	
	Other	1	9%	0	1	0	0	0	
	Fatal Crashes	1	9%	0	0	0	1	0	
	Injury Crashes	4	36%	2	0	0	0	2	
	PDO Crashes	5	45%	2	1	0	0	3	
	*includes Run Off Road. Head-On ar	nd Sideswin	e Crashes						

Drivers' view looking south from eastbound Division Rd


Crashes by Type


Drivers' view looking north from eastbound Division Rd



8. SR 9 / DIVISION RD INTERSECTION

There are two proposed alternatives for the intersection. The first alternative is to add overhead flashing beacons and enhanced signage to increase awareness of the danger of the intersection. Signage improvements would involve doubling up on stop signs along Division Rd. Flashers would involve two flashing beacons for each approach, with the SR 9 approaches receiving amber flashers and Division Rd receiving red flashers.

The second alternative would convert the existing four-way intersection into a reduced conflict intersection (RCI). This alternative would add left turn lanes on SR 9 and eliminate the median crossover on the alignment of Division Rd. Additional crossovers would be placed 700' on either side of the intersection to facilitate the left turn and crossing movements. The RCI should eliminate the dangers of drivers trying to cross in front of traffic and separates the intersections with each direction of SR 9 to isolate drivers' concentration on one direction at a time. This alternative would be more expensive than the flashing beacons, however the RCI is anticipated to provide the highest safety benefit.

Proposed reduced conflict intersection (RCI) plan view

Plan view of proposed flashing amber and red beacons

9. LOW-COST SIGNAGE IMPROVEMENTS

Huntington County contains intersections with higher crash rates compared to other county road intersections. These intersections are usually between one or more low volume roads, and do not have crash frequency rates high enough to make major intersection modifications feasible. Lower volume intersections should be evaluated for low-cost high reward improvements, notably signage.

The following intersections have preliminarily been identified for signage improvements based off their traffic volume and crash history:

- CR 900 N at Meridian Rd
- Rangeline Rd at CR 200 N
- Rangeline Rd at Hauenstein Rd
- Division Rd at SR 5

These improvements could include doubled up signage, flashing stop signs, conversions to all way stop control, advance warning signs, and improved sightlines or positioning of signage.

Additional signage recommendations for state routes include doubling up advance warning signs for stop-controlled intersections and buzz strips on state routes and major collectors. A general driver expectation on a state route is prolonged stretches without having to stop. Buzz strips and advance warning signs are low-cost measures to ensure that drivers are alerted to the upcoming stops on an otherwise free flowing corridor. Intersections where state routes are stop-controlled are indicated on the summary map.

Existing stop sign on eastbound Division Rd at SR 5

Buzz strips preceding a sharp curve on SR 1 in Leo. There are no known buzz strips in

use in Huntington County

Drivers' view looking south from eastbound CR 900 N at Meridian Rd intersection. Drivers must advance beyond stop sign to gain clear sightlines

Flashing stop sign at CR 300 E / CR 200 N. The signs were installed after 2 fatal crashes

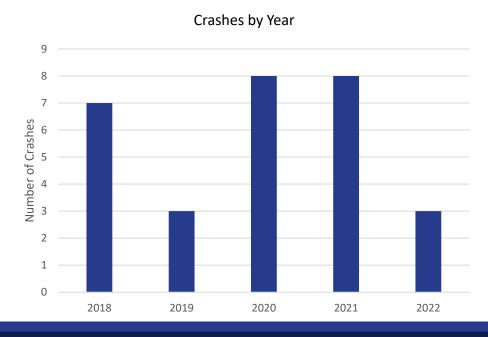
ALL WAY

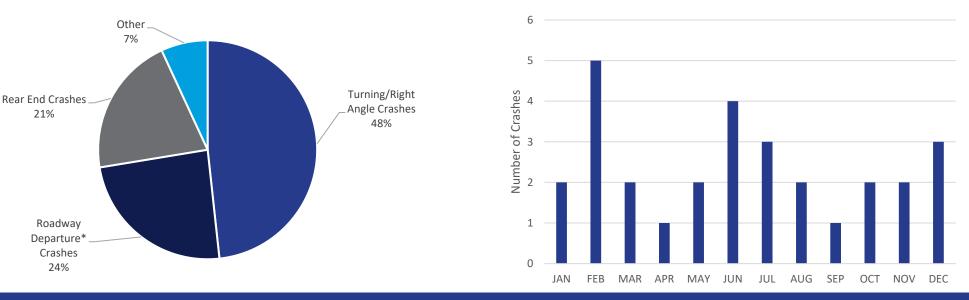
Doubled up stop ahead signs on SR 3 approaching SR 124

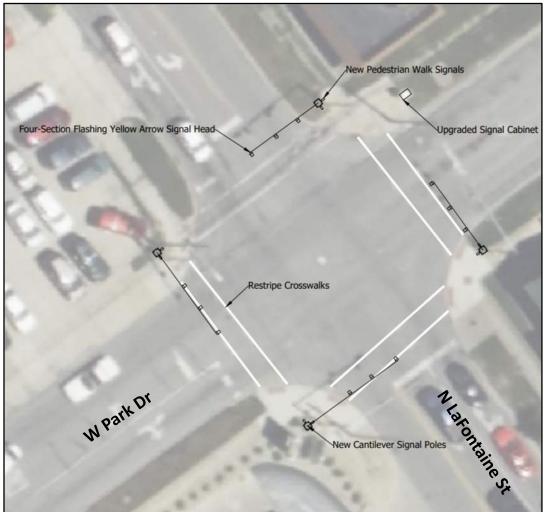
Drivers' view looking north from eastbound CR 200 N at Rangeline Rd intersection

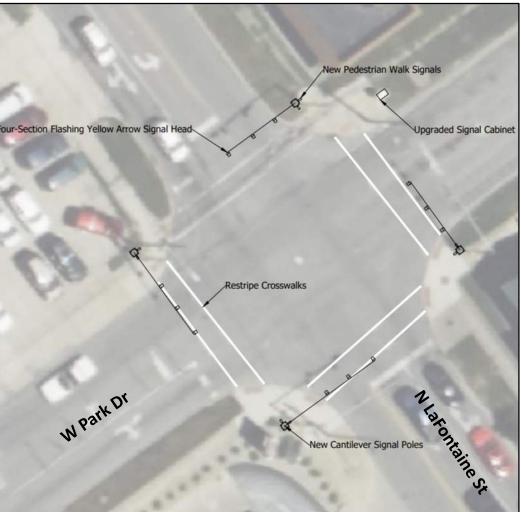
Drivers' obstructed view looking south from westbound Hauenstein Rd at Rangeline Rd intersection

10. PARK DR / LAFONTAINE ST INTERSECTION


The intersection of Park Drive and Lafontaine Street in Huntington has been identified as an intersection requiring improvements. Crashes for this intersection were analyzed for the period 2018-2022. From this analysis, there were 29 crashes at the intersection during the study period, with 4 resulting in injuries. The leading crash type were right angle crashes, with 14 of the 29 accidents being right angle collisions. The existing intersection is controlled by a two-phase traffic signal, with no separate turn phases. Each approach to the intersection has a left turn lane and a right/thru lane. The recommended alternative is to modify the traffic signals to retime the light cycles and potentially add turn phases. Added turn phases would reduce the number of actively conflicting movements at the intersection and reduce the number of right-angle crashes. An ongoing project is reconstructing the intersection as part of a utilities project, though signal modifications are not within the project scope.


Ongoing reconstruction work at Park Dr / LaFontaine St intersection


Type of Collision	5-yr Total	Number of Crashes per Year						
	Crashes % Crashes		2018	2019	2020	2021	2022	
Total Crashes	29	-	7	3	8	8	3	
Turning/Right Angle Crashes	14	48%	3	1	6	3	1	
Roadway Departure* Crashes	7	24%	2	2	1	1	1	
Rear End Crashes	6	21%	2	0	1	3	0	
Other	2	7%	0	0	0	1	1	
Fatal Crashes	0	0%	0	0	0	0	0	
Injury Crashes	4	14%	1	0	1	1	1	
PDO Crashes	25	86%	6	3	7	7	2	


*includes Run Off Road, Head-On and Sideswipe Crashes

Crashes by Type

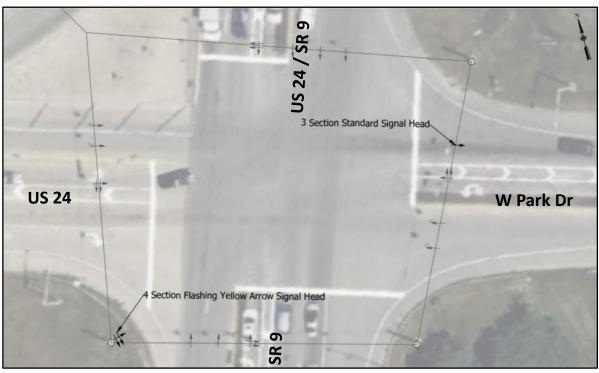
Proposed signal changes to Park Dr / LaFontaine St intersection

Crashes by Month

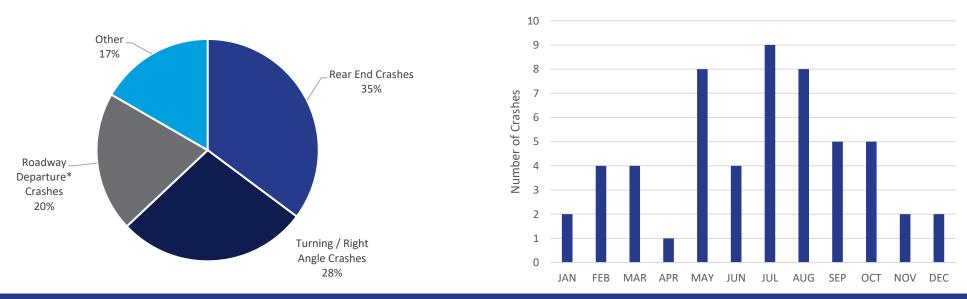
11. US 24 / SR 9 SIGNAL IMPROVEMENTS

The purpose of the US 24 / SR 9 intersection improvements is to increase safety for motorists within the intersection. A crash analysis performed for the period 2018-2022 found 54 crashes at the intersection, with 19 rear end and 15 right angle collisions. The analysis also found that 45 of the 54 accidents occurred from 2018-2020, with only 9 between 2021-2022. This is due mostly to the slotted left turn improvements made to this intersection in early 2021. The proposed changes would add two signal heads facing the east approach of the intersection. These heads are to be positioned in locations that increase visibility to drivers when the sun sets to the west, as this lack of visibility is a leading concern at the intersection. Summer months with longer, later sunsets have significantly more crashes than the winter months. The proposed improvements are perceived as lowcost high-reward and can further reduce crashes at one of the county's three busiest signalized intersections.

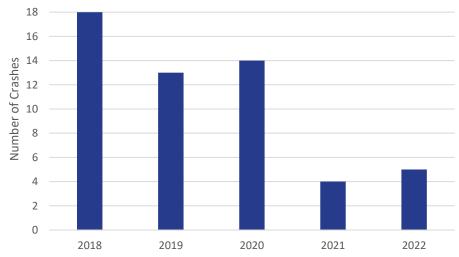
View looking west from Park Dr



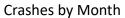
Pedestal mounted signal


Sunlight glare behind traffic signal for westbound Park Dr


Crashes by Type

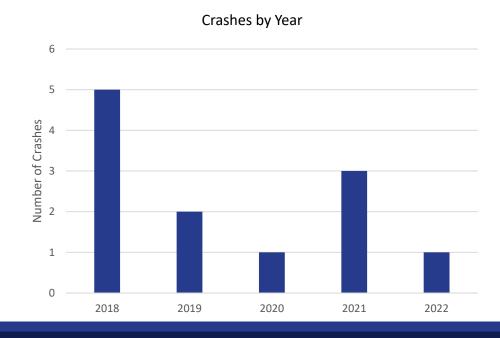

Turne of Collision	5-yr Total	% Crachas	Number of Crashes per Year						
Type of Collision	Crashes	% Crashes	2018	2019	2020	2021	2022		
Total Crashes	54	-	18	13	14	4	5		
Rear End Crashes	19	35%	3	5	8	1	2		
Turning / Right Angle Crashes	15	28%	4	2	5	3	1		
Roadway Departure* Crashes	11	20%	5	3	1	0	2		
Other	9	17%	6	3	0	0	0		
Fatal Crashes	0	0%	0	0	0	0	0		
Injury Crashes	12	22%	2	4	3	1	2		
PDO Crashes	42	78%	16	9	11	3	3		

*includes Run Off Road, Head-On and Sideswipe Crashes



20

Plan view of proposed added traffic signals

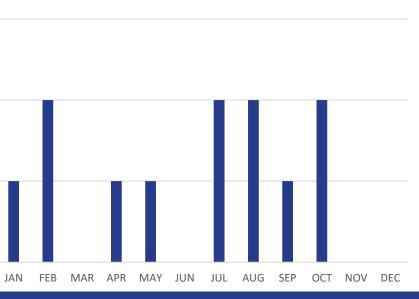

12. ETNA RD / CR 100 N INTERSECTION

The purpose of the Etna Rd/CR 100N intersection reconstruction is to improve safety for motorists navigating the intersection. An analysis of the crash data for 2018-2022 was performed to determine the crash frequencies at this intersection. There were 11 crashes at the intersection with 6 resulting in injuries. 7 of the crashes were right angle crashes.

The existing intersection prioritizes the traffic movement from Etna Rd to SR 9 resulting in an unconventional intersection with geometry confusing to the other intersection users. Currently the ramp from SR 9 and the curve from southbound Etna Rd to westbound 100N are not stop-controlled and carry 50+ mph speeds through the intersection. The line of sight for drivers approaching on CR 100 from the east, looking south along the SR 9 ramp, is partially blocked by trees, making it difficult for drivers to safely enter the intersection.

Type of Collision	5-yr Total	% Crashes	Number of Crashes per Year						
Type of Collision	Crashes	% Crusiles	2018	2019	2020	2021	2022		
Total Crashes	12	-	5	2	1	3	1		
Turning/Right Angle Crashes	7	58%	5	1	0	1	0		
Roadway Departure* Crashes	3	25%	0	1	0	1	1		
Deer Crashes	1	8%	0	0	1	0	0		
Other	1	8%	0	0	0	1	0		
Fatal Crashes	0	0%	0	0	0	0	0		
Injury Crashes	6	50%	3	1	0	1	1		
PDO Crashes	6	50%	2	1	1	2	0		

*includes Run Off Road, Head-On and Sideswipe Crashes


Other 8%

Crashes by Type

Deer Crashes. 8% Number of Crashes Turning/Right Angle Crashes 59% Roadway Departure* Crashes 25% Ω

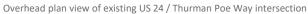
SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

Crashes by Month

12. ETNA RD / CR 100 N INTERSECTION

The selected improvement is to reconstruct the intersection into a more conventional configuration and implement all-way stop control. The intersection would be rebuilt into a standard four-way intersection with channelized right turns on the north side of the intersection to favor the south to west movement (the west to north movement would utilize existing pavement). The intersection will utilize all-way stop control to slow down motorists and reduce high impact right angle crashes. Additional advance warning signage would be recommended to increase awareness of the all-way stop.

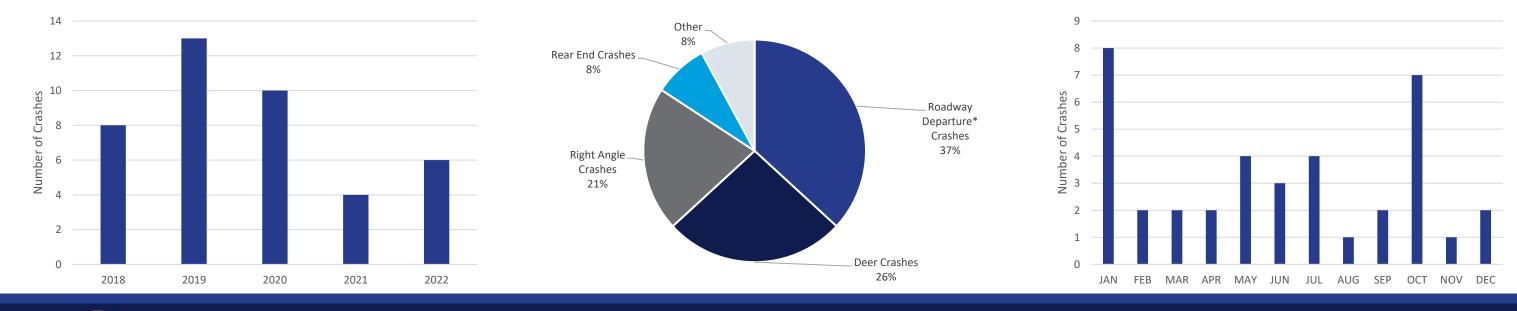
Plan view of proposed reconfiguration of Etna Rd / CR 100 N intersection to a conventional All Way Stop Controlled intersection.



13. US 24 AUXILIARY LANE

The purpose of the US 24 auxiliary lane is to improve the safety of motorists on US 24 between the Old 24 interchange and Thurman Poe Way. An analysis of the crash data for the corridor was performed for the years 2018-2022. There were 38 crashes along the studied section of US 24, with only 4 resulting in injuries. There were 14 roadway departure crashes, 10 deer crashes, and 8 right angle crashes. The corridor begins with the interchange between Old 24 and US 24, and contains three closely spaced intersections with Meridian Road, an entrance to Gladieux Energy, and Thurman Poe Way. The road is prone to frequent accidents in this area involving merging traffic, including slow trucks, attempting to merge to/from turn lanes and the on ramp to/from travel lanes.

Crashes by Year



Overhead plan view of US 24 from Meridian Rd to Gladieux Energy entrance

5-yr Tota Type of Collision Crashes Total Crashes 38 Roadway Departure* Crashes 14 Deer Crashes 10 8 Right Angle Crashes Rear End Crashes 3 Other 3 Fatal Crashes 0 Injury Crashes PDO Crashes 34

*includes Run Off Road, Head-On and Sideswipe Crashes

Crashes by Type

Tanker truck turning from Gladieux Energy to US 24

al	% Crashes		Number o	of Crashes	s per Year	
5	% crusiles	2018	2019	2020	2021	2022
	-	8	13	10	4	6
	37%	2	5	4	2	1
	26%	4	2	2	0	2
	21%	1	4	4	1	1
	8%	1	1	0	0	1
	8%	0	1	0	1	1
	0%	0	0	0	0	0
	11%	0	1	1	1	1
	89%	8	12	9	3	5

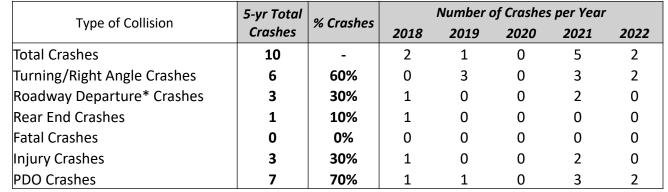
Crashes by Month

13. US 24 AUXILIARY LANE

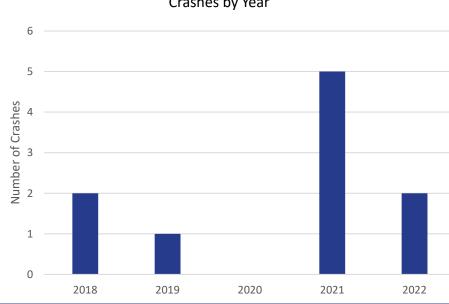
The proposed solution is to join the disjointed turn lanes and on ramp merge lane into a continuous auxiliary lane, serving as an acceleration/deceleration lane for vehicles entering and exiting the highway from the city and the industrial facilities to the south of US 24. This solution would create a single 4,000' long auxiliary lane that is 12' wide with a 10' outside shoulder. The new shoulder would receive corrugations on the edge line to warn motorists potentially departing the roadway. A similar lane exists in the westbound direction as a long-left turn lane into the facilities and the new lane would imitate that in the eastbound direction. Overhead flashing beacons and Trucks Entering Highway signs would provide additional warning to motorists of slowmoving vehicles turning onto US 24.

Proposed auxiliary lane near Meridian Rd

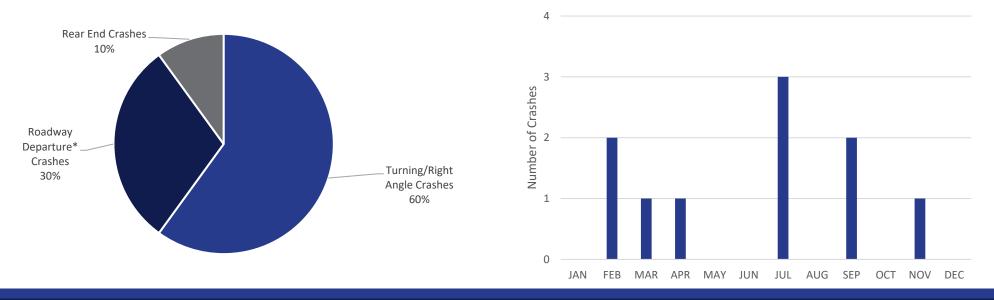
Proposed auxiliary lane near Thurman Poe Way


14. MARKET ST / FIRST ST INTERSECTION

The intersection of Market St and First St in Huntington has been identified as an intersection requiring further study to properly improve the intersection. The intersection had 10 accidents between 2018-2022 with 4 resulting in injuries. The ideal improvement for this intersection would be a roundabout; however, due to existing right-of-way and building constraints a standard sized roundabout is not feasible. Improving the intersection will be carried out in a multistep process. The first step would be to add pavement markings to the intersection to clarify the intended vehicle paths, define stop lines, and identify crosswalks. If striping improvements prove to be inadequate, signal modifications should be the second step. This would involve changes to signal timing and potentially adding turn phases on Market St to avoid right angle collisions.



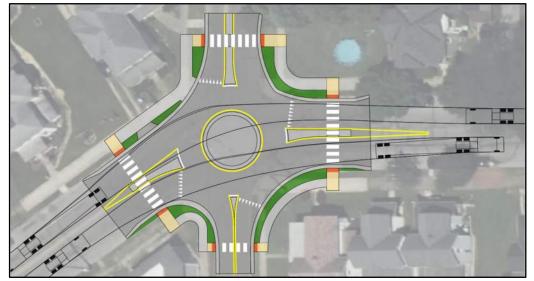
No pedestrian signals or painted crosswalks



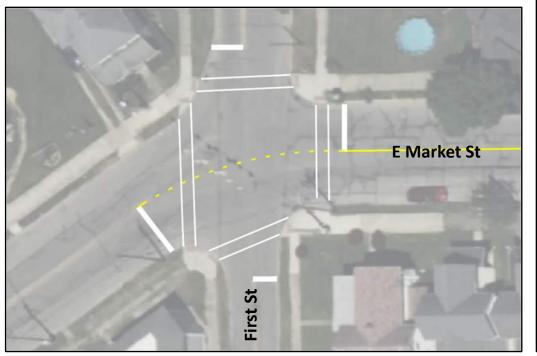
*includes Run Off Road, Head-On and Sideswipe Crashes

Crashes by Year

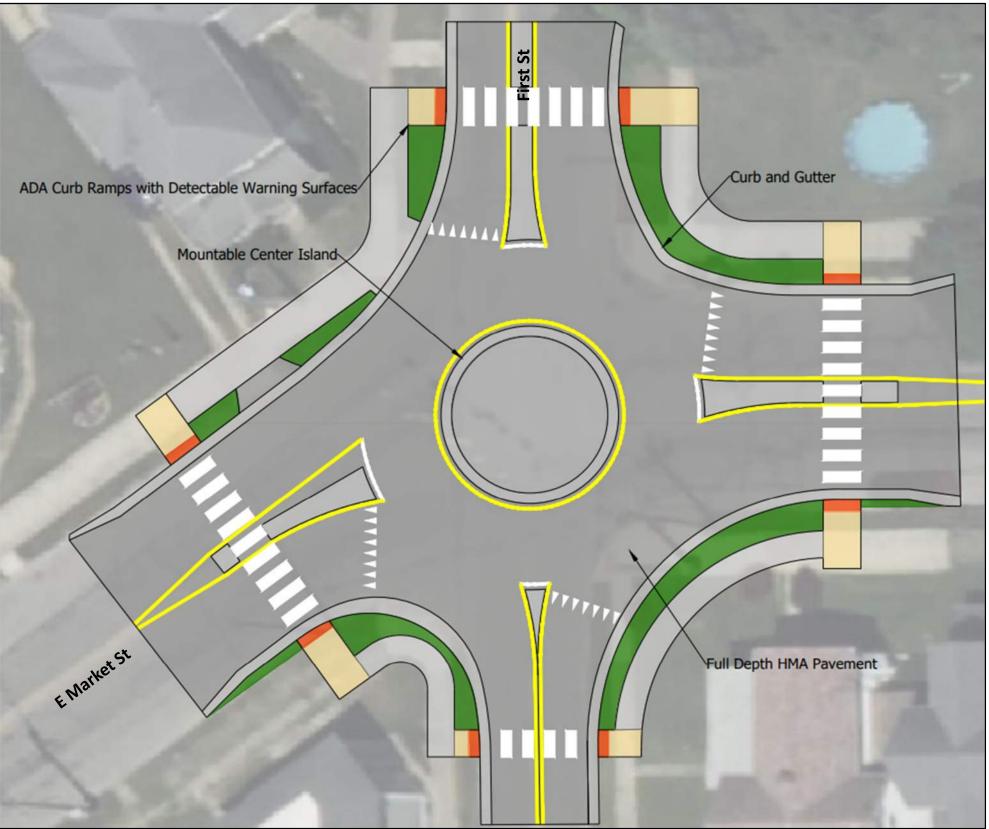
SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN


Crashes by Type

Tire marks encroaching into eastbound lanes of Market St from westbound traffic


Crashes by Month

14. MARKET ST / FIRST ST INTERSECTION

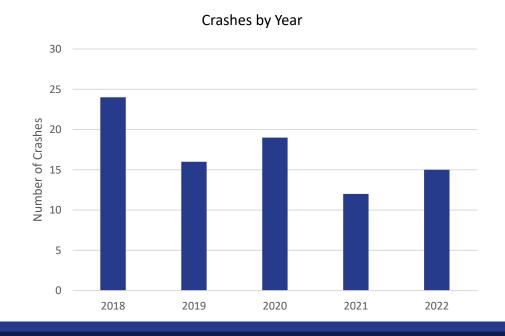

If striping and signal modifications prove to be inadequate, a roundabout should be considered. The roundabout alternative would provide adequate traffic benefit and is recommended as the ideal solution from a traffic standpoint; however, there are limitations to how a roundabout could be implemented. A mini roundabout would take minimal right-of-way and would accommodate truck turning movements along Market St through the roundabout with a fully mountable center island.

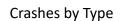
Truck turning movements for proposed roundabout

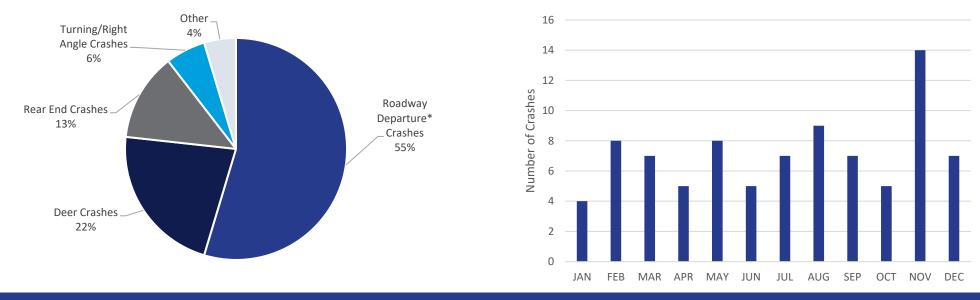
Phase I striping improvements for Market St / First St intersection

Plan view of proposed mini roundabout for Market St / First St intersection

15. SR 5 GOSHEN RD WIDENING


The purpose of the SR 5 widening project is to improve safety for motorists navigating the corridor between US 24 and CR 900N. An analysis of the crash data for 2018-2022 was performed to determine the crash frequencies along the corridor. The specified segment of SR 5 experienced 86 crashes in the five-year period, with 15 resulting in injuries. The most common crash type was roadway departure related, of which there were 47 such incidents. Deer accounted for 19 crashes.

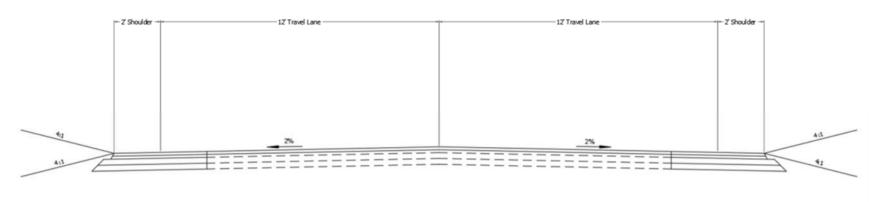

The existing facility consists of one 10' lane in each direction with no shoulder. The road has several sharp curves near Clear Creek and Bracken Rd. The area near the Clear Creek bridg مناحص مامر خاب . ..: and foliage



Drivers' view of southbound SR 5 curve at Bracken Rd with 10' travel lanes

eek bridge experiences n age encroaching on the e	multiple elevation changes		Type of Collision	5-yr Total	% Crashes	Number of Crashes per Year					
			Type of Collision	Crashes	% Crasnes	2018	2019	2020	2021	2022	
r	10° Travel Lane		Total Crashes	86	-	24	16	19	12	15	
			Roadway Departure* Crashes	47	55%	14	7	10	7	9	
			Deer Crashes	19	22%	4	5	6	2	2	
			Rear End Crashes	11	13%	4	2	1	1	3	
	Varies	Varies	Turning/Right Angle Crashes	5	6%	1	0	1	2	1	
			Other	4	5%	1	2	1	0	0	
Vares		Varias	Fatal Crashes	0	0%	0	0	0	0	0	
			Injury Crashes	15	17%	5	3	5	1	1	
	EXISTING		PDO Crashes	71	83%	19	13	14	11	14	
			*includes Run Off Road, Head-On	and Sideswi	be Crashes						

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN



Drivers' view of truck turning on SR 5 northbound west of Clear Creek

Crashes by Month

15. SR 5 GOSHEN RD WIDENING

The proposed improvement for SR 5 is to widen the existing roadway to contain 12' travel lanes (one in each direction) and 2' shoulders on either side of the roadway. As a part of the widening project, corrugations will be milled into the edge and centerlines of the road to provide additional warning to motorists departing their lanes. Existing curve delineators and guardrail will need to be relocated as a part of this project. SR 5 is classified as a major collector, of which the Indiana Design Manual requires minimum 11' lanes and 2' shoulders for roads with an AADT above 400 (with 12' lane width desirable). Additionally, the IDM requires an arterial with a design speed above 50 mph and an AADT above 1500 to have a minimum obstruction-free-zone width of 20' from the edge of travel way, or from the edge of travel way to the right-of-way line. A smaller widening project was completed in 2023 that widened the curve and approaches to the Clear Creek bridge to include 12' travel lanes and 5' shoulders

PROPOSED

Plan view of proposed SR 5 widening at Bracken Rd intersection

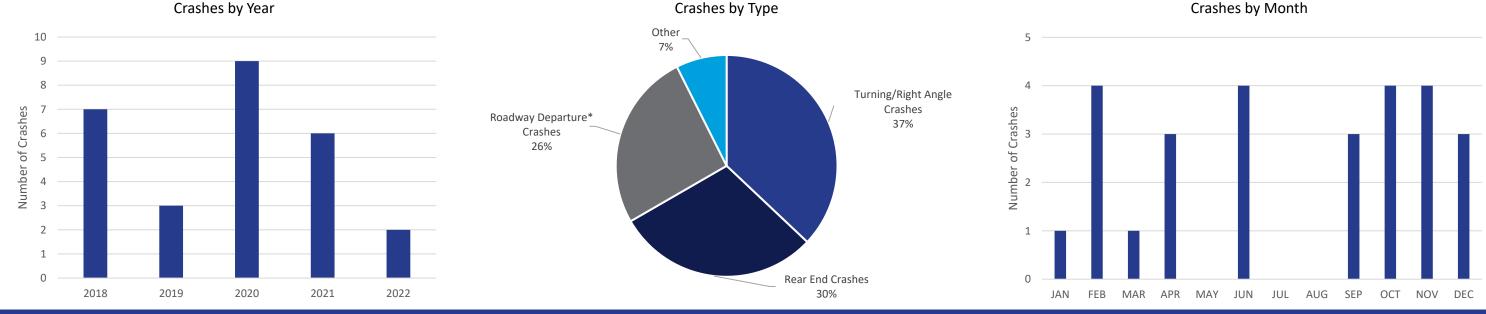
Widened SR 5 bridge and approach over Clear Creek to 12' travel lanes and 5' shoulders, completed in 2023

Plan view of proposed widening to curve west of Clear Creek. Road would be widened to include 12' travel lanes and 2' shoulders on each side

Southern limits of proposed widening north of William E. Zahn Ave

16. US 24 / CR 900 N SLOTTED LEFT TURN

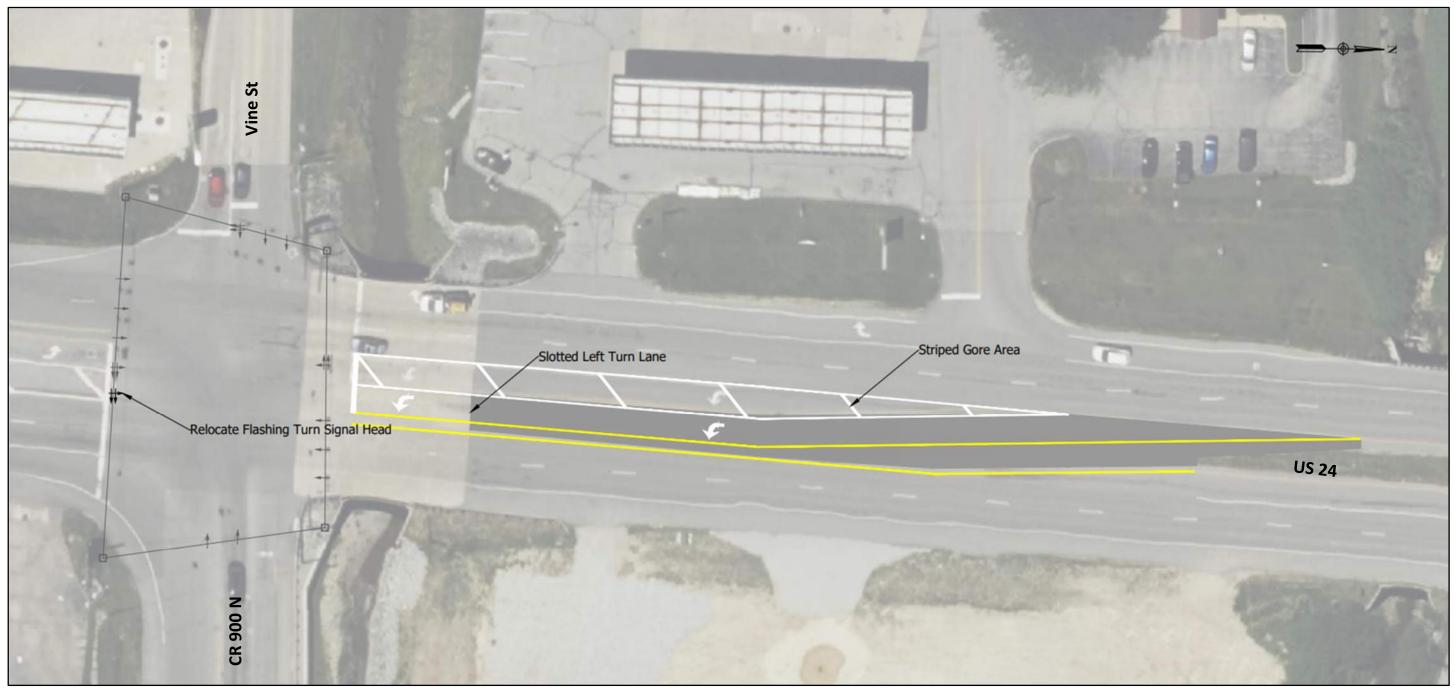
The purpose of the US-24/CR 900N intersection improvements is to improve safety for motorists while navigating the intersection. An analysis of the crash data provided for 2018-2022 was performed to determine the crash frequencies at this intersection. There were 27 crashes at the intersection in the five-year study period, with 3 resulting in injuries and none resulting in fatalities. The highest number of crashes was reported in 2020 with 9 crashes at the intersection, including 4 turning and 2 rear end collisions. Across the five years, it was determined that turning and right-angle crashes were the leading crash type, accounting for 37 percent of crashes at this intersection. Furthermore, 6 of these crashes involved vehicles in the southbound left turn lane for vehicles on US-24 to CR 900, in 3 instances the driver couldn't see and in 3 instances the driver misjudged their ability to safely clear the intersection. There is currently a bridge deck overlay project on the north approach, though no reconfigurations are being made.



US 24 bridge deck overlay, looking south at CR 900 N intersection

Type of Collision	5-yr Total	% Crashes	Number of Crashes per Year					
	Crashes		2018	2019	2020	2021	2022	
Total Crashes	27	-	7	3	9	6	2	
Turning/Right Angle Crashes	10	37%	2	0	4	3	1	
Rear End Crashes	8	30%	4	2	2	0	0	
Roadway Departure* Crashes	7	26%	1	1	2	2	0	
Other	2	7%	0	0	1	1	1	
Fatal Crashes	0	0%	0	0	0	0	0	
Injury Crashes	3	11%	0	0	2	0	1	
PDO Crashes	24	89%	7	3	7	6	1	

*includes Run Off Road, Head-On and Sideswipe Crashes


SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

View of existing southbound turn lane at US 24 / CR 900 N intersection

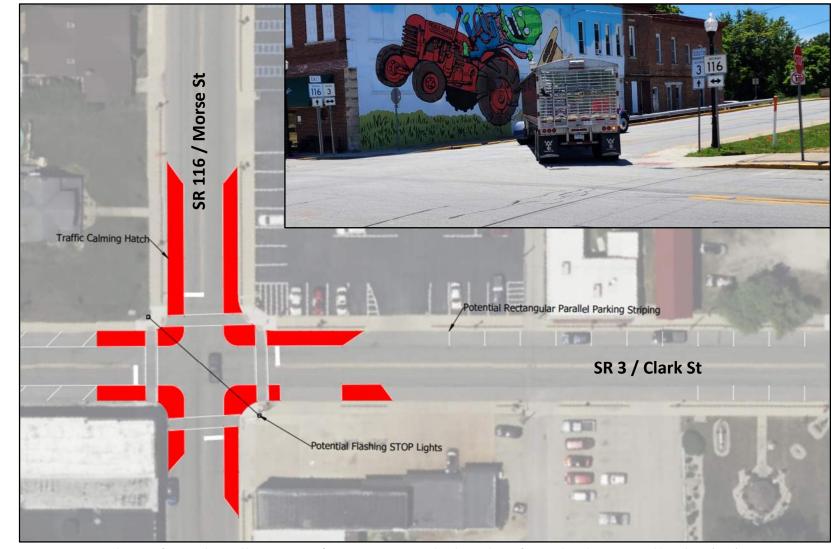
Crashes by Month

16. US 24 / CR 900 N SLOTTED LEFT TURN

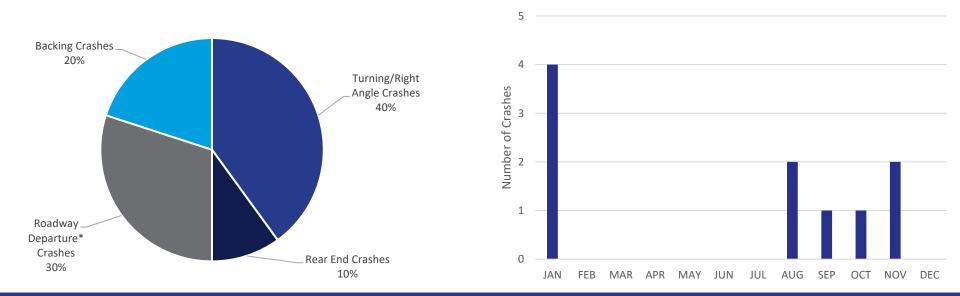
The selected improvement is the modification of the existing left turn lane in the southbound direction on US-24 into a slotted left turn lane. The slotted left turn lane will offset the existing left turn lane 12' towards the northbound travel lanes of US-24. The channel for the turn lane will form approximately 325' north of the intersection and will taper to 12' of separation from the travel lanes 200' north of the intersection. The separation will limit visual obstruction of the travel lanes on US-24 by providing better sightlines to vehicles in the travel lanes from the eastbound and westbound left turn lanes. This will also reduce the distance vehicles must travel to safely complete a left turn onto eastbound CR 900N by 12' (or 0.55 seconds at 15 mph). The anticipated impact of the improvements will improve driver judgement with improved visibility and less distance to judge. The shorter turn length will also provide a half-second of forgiveness to drivers who misjudge their turns.

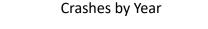
Plan view of proposed southbound slotted left turn lane improvement

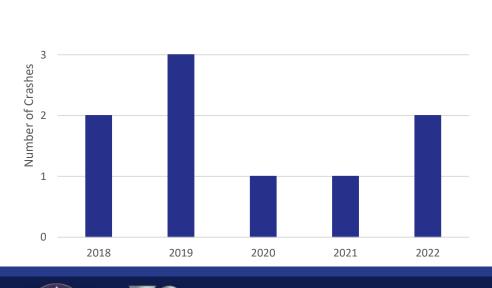
SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN


17. SR 3 / SR 116 BUMPOUT

The purpose of the SR 3 / SR 116 intersection bump out is to improve safety for motorists and pedestrians at the intersection. A crash analysis during the period 2018-2022 revealed 10 crashes at the intersection, with two resulting in injuries. Right angle collisions made up 4 out of 10 accidents. The existing approaches at the intersection consist of 20' of pavement on each side, leading to confusion about whether there is one or two lanes.


The proposed improvement is to create a painted bump out at the intersection. This bump out would tighten the intersection and clearly define the usable lane on each approach. The bump out would be striped rather than use a curb to allow for tractor trailer turning movements. Additional traffic calming measures that would be implemented include flashing stop lights above the intersection, hatched striping on the shoulder of SR 3 in no parking zones and striping to define street parking spaces.


Type of Collision	5-yr Total	% Crashes	Number of Crashes per Year					
	Crashes		2018	2019	2020	2021	2022	
Total Crashes	10	-	2	3	1	1	2	
Turning/Right Angle Crashes	4	40%	2	0	0	0	2	
Rear End Crashes	1	10%	0	0	1	0	0	
Roadway Departure* Crashes	3	30%	0	1	0	1	1	
Backing Crashes	2	20%	0	2	0	0	0	
Fatal Crashes	0	0%	0	0	0	0	0	
Injury Crashes	2	20%	0	0	0	1	1	
PDO Crashes	8	80%	2	3	1	0	1	


*includes Run Off Road, Head-On and Sideswipe Crashes

Plan view of proposed painted bumpout at SR 3 / SR 116 intersection. Truck making wide turn from eastbound SR 116 to southbound SR 3 (inset)

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

Crashes by Type

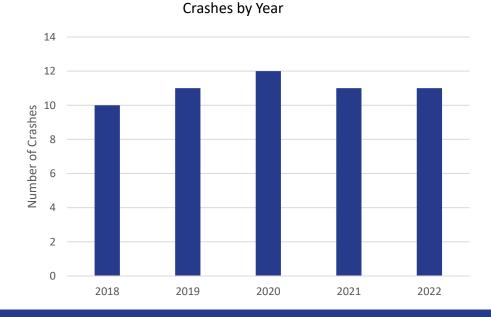
Crashes by Month

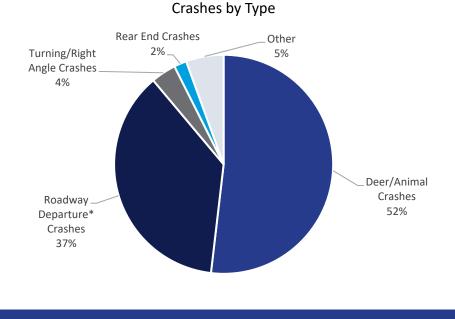
18. CR 300 W WIDENING

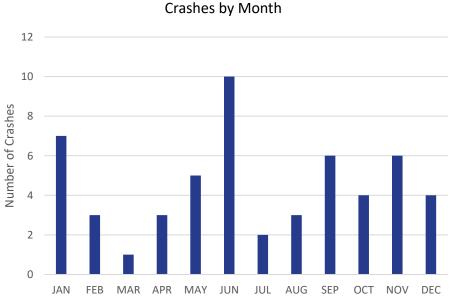
The purpose of the CR 300W corridor improvements are to improve the safety of motorists while navigating the 13-mile corridor beginning at SR 218 and ending at Etna Road. An analysis of the crash data provided for 2018-2022 was performed to determine the crash frequencies along the corridor. During the five-year study period there were 54 crashes, with 10 resulting in injuries and none resulting in fatalities. The highest number of crashes in any year was in 2020 with 12 crashes, including 6 animal related and 5 departure related crashes. Across the five years, animal related crashes were the most prevalent resulting in 52 percent of all crashes along the corridor. Roadway departure crashes were the most common non-animal crash type, making up 77 percent of non-animal related crashes and 37 percent of all crashes.

Drivers' perspective of CR 300 W north of CR 800 S

View looking north on CR 300 W from CR 900 S intersection. Trucks are restricted from CR 300 W

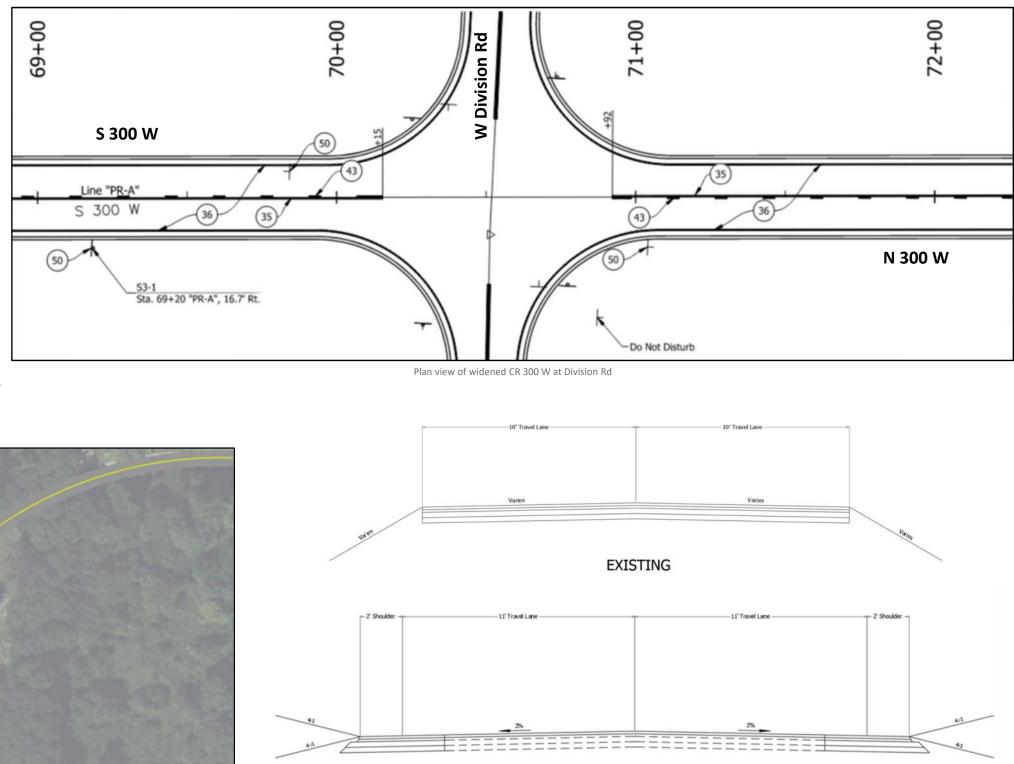



CR 300 W continues from SR 5 as the most direct route to Huntington

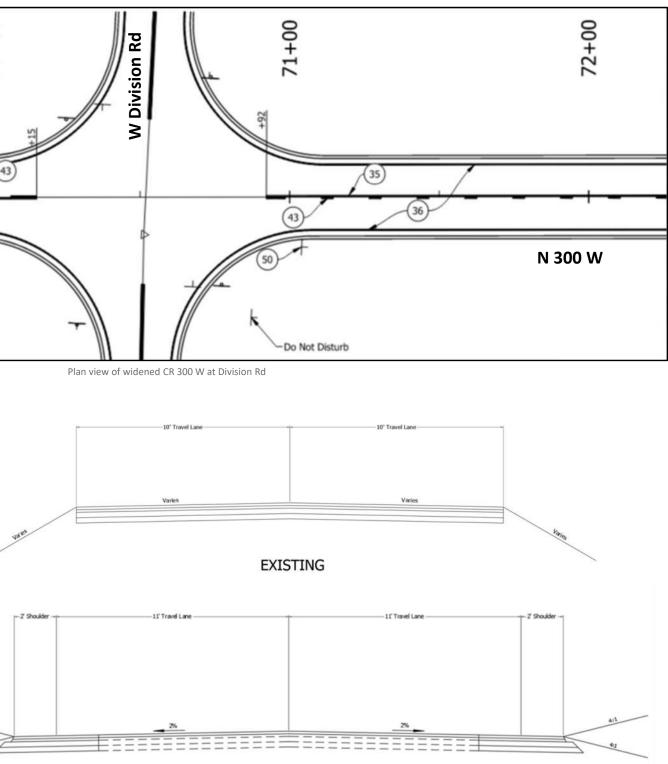


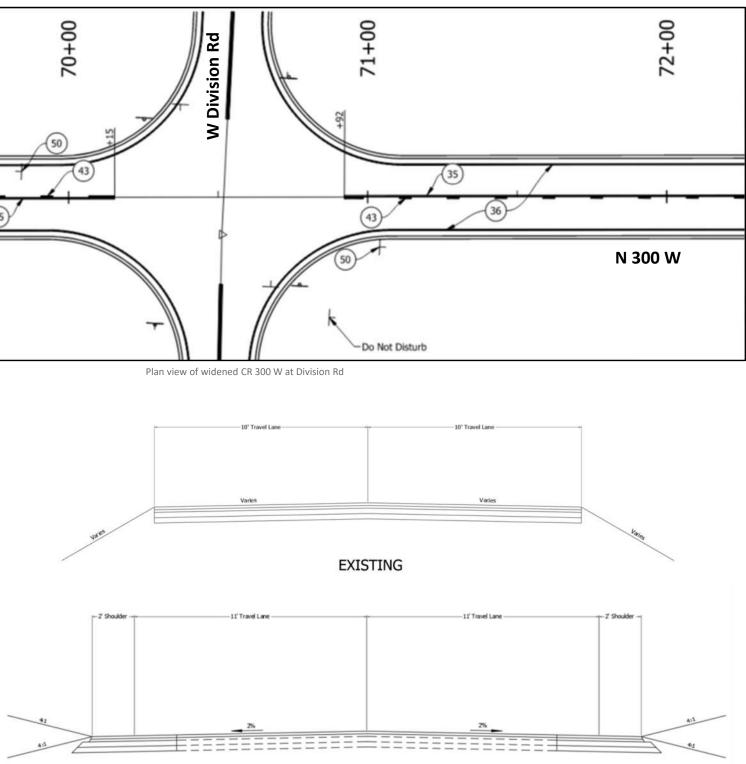
Type of Collision	5-yr Total	% Crashes	Number of Crashes per Year					
	Crashes		2018	2019	2020	2021	2022	
Total Crashes	54	-	10	11	12	11	11	
Deer/Animal Crashes	28	52%	4	6	6	7	5	
Roadway Departure* Crashes	20	37%	4	4	5	3	4	
Turning/Right Angle Crashes	2	4%	0	1	0	0	2	
Rear End Crashes	1	2%	1	0	0	0	0	
Other	3	6%	1	0	1	1	0	
Fatal Crashes	0	0%	0	0	0	0	1	
Injury Crashes	10	19%	1	2	4	0	3	
PDO Crashes	44	81%	9	9	8	11	7	

*includes Run Off Road, Head-On and Sideswipe Crashes



SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN


Sharp curves along CR 300 W between CR 100 N and Etna Rd


18. CR 300 W WIDENING

There are multiple recommended improvements for the CR 300W corridor. The primary improvement consists of a 4' widening on each side of the roadway from SR 218 to CR 100N. As a part of the widening project, the existing pavement in the widened area will receive mill and overlay treatment. The remainder of CR 300W from CR 100N to Etna Road would receive mill and overlay treatment but no widening. Additionally, SafetyEdge technology would be implemented on the edge of the roadway. The widening improvement would expand the road from two 10' lanes to two 11' lanes with 2' outside shoulders with SafetyEdge. Corrugations would be added along the edge and center lines to reduce the likelihood of departure related crashes. The widened roadway would allow for a more forgiving design to a corridor prone to departure related crashes. The SafetyEdge shoulder treatment would slope the pavement 30 degrees from the edge of pavement to eliminate drop off, further enabling the ability for departing vehicles to safely return to the roadway. SafetyEdge can reduce departure related crashes by an average of 20 percent. Additional measures along the corridor include added signage, curve delineators, and all-way stop conversions. A current project to improve the geometry of the Division Road / CR 300 W intersection would also involve widening the pavement to 13' on each side.

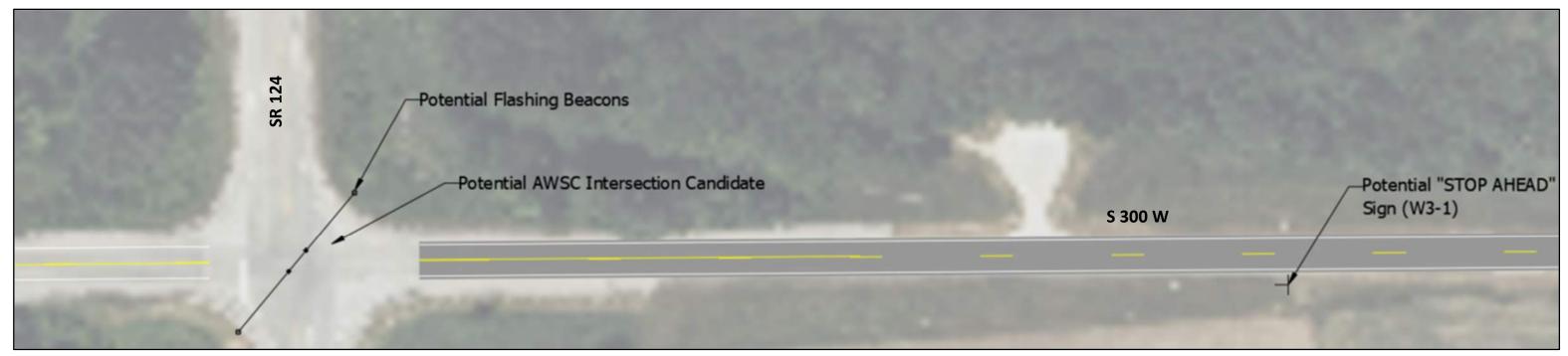
PROPOSED

Plan view of resurfaced CR 300 W with SafetyEdge near Etna Rd

18. CR 300 W WIDENING

124

Added signage would include "STOP AHEAD" signs at the SR 124 intersection and would double up the existing southbound sign to enhance visibility. Curve delineators would be added to the curves between W 100N and Etna Road where tight curves and trees limit visibility of the roadway. The intersection between SR 124 (600S) and CR 300W is considered a candidate for all-way stop conversion due to poor sightlines on the approaches from CR 300W. All-way stop control would reduce the likelihood of severe multivehicle accidents and high-speed collisions. There were five right angle collisions at this intersection during the study period, resulting in a fatal crash that killed two people and another crash resulting in injury. Overhead flashing beacons should be considered for this intersection whether it remains two-way stop controlled or converts to all-way stop controlled.

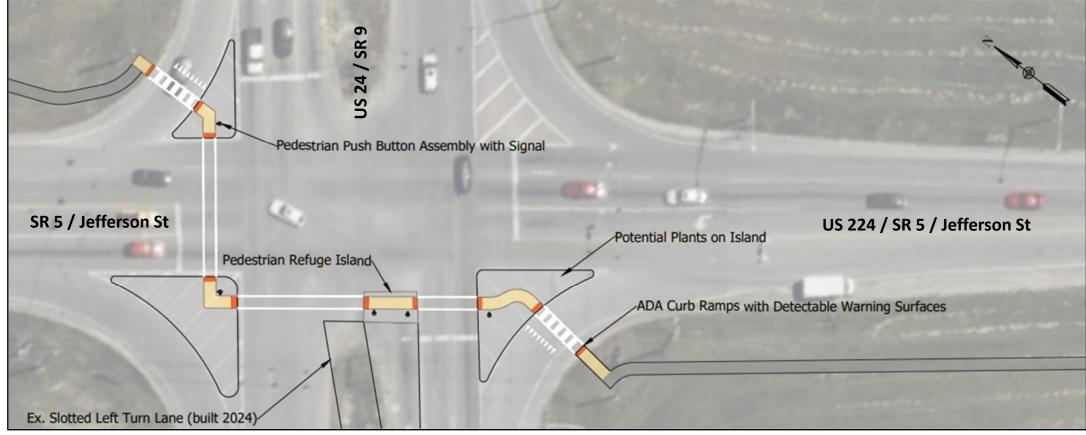


Existing overhead plan view of CR 300 W / SR 124 intersection

W 600 S

Stop Ahead sign on southbound CR 300 W

Plan view of proposed widening signage, and flashing beacon improvements

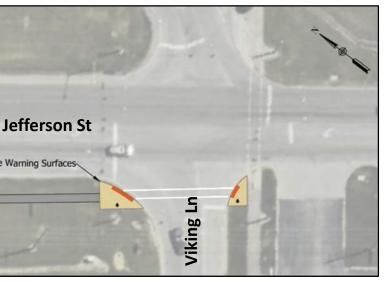


View of SR 124 intersection from southbound CR 300 W

19. JEFFERSON ST SIDEWALK

The purpose of the Jefferson Street sidewalk is to enhance safety for pedestrians crossing US 24 to and from the shopping center north of US 24. The existing intersection at Jefferson St (US 224/SR 5) and US 24 is signalized, with US 24 being a divided highway and each right turn movement utilizing separate turning roadways. In 2023 there was a project to add slotted left turn lanes to each approach on US 24, which was completed by April 2024. There are no existing pedestrian facilities at this intersection. The intersection is a common pedestrian crossing point for people crossing US 24 to walk from their neighborhood to the shopping area and vice versa. The nearest crosswalk across US 24 is at Guilford St, 1,400 ft east of the intersection with Jefferson St. However, pedestrians must walk a half mile south of US 24 before another sidewalk connects them to Jefferson St. The intersections with Hauenstein Rd and Viking Ln (the first intersections north and south of US 24 respectively) both have sidewalks/trails connecting to at least one approach.

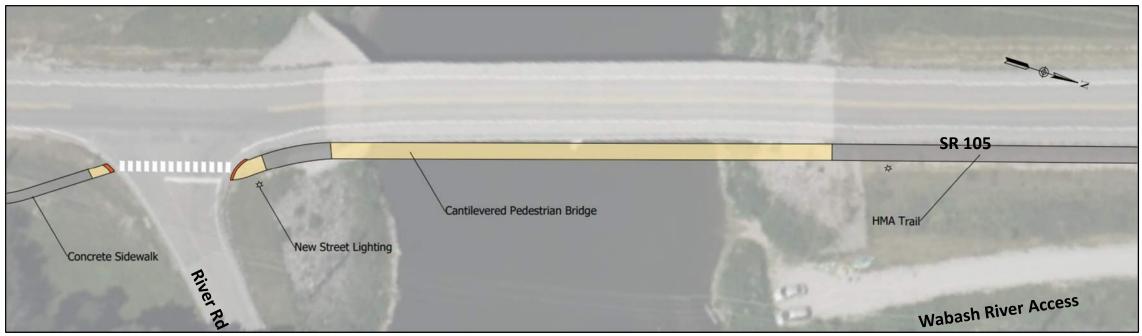
The Jefferson St sidewalk project would construct a new sidewalk to connect the pedestrian facilities at the Hauenstein Rd and Viking Ln intersections through a safe crossing point on US 24. The sidewalk would start on the south corner of the Viking Ln intersection and follow the west side of Jefferson St to US 24. This side was selected as there are fewer above ground utility conflicts and better access to the strip mall on the west side of Jefferson St. The sidewalk would cross both US 24 and Jefferson St at the intersection, ending up on the north corner of the intersection. This crossing is needed as the south corner of the Hauenstein Rd intersection has skewed geometry that would make a practical pedestrian crossing difficult. The sidewalk would meander around the poles on the east corner of the intersection to tie into the new curb ramp on the Frontage Rd trail.



Plan view of proposed sidewalk and curb ramps at US 24 / Jefferson St (SR 5) intersection

Pedestrian view looking north along Jefferson St (SR 5) from southwest gore area

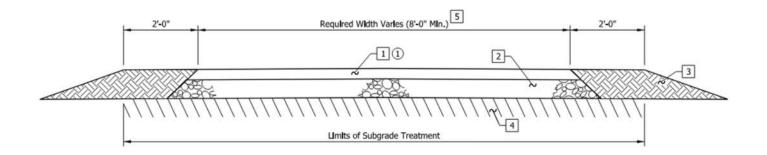
Plan view of proposed sidewalk and curb ramps at Viking Ln / Jefferson St intersection


20. ANDREWS SR 105 TRAIL

The purpose of the SR 105 trail project is to provide a safe walking route from the town of Andrews to the Dollar General store located adjacent to US 24 and the Wabash River boat ramp. This route has experienced multiple near misses with pedestrians, including incidents involving seniors and children. Improvements are anticipated to act as a preventative measure to near-misses becoming collisions. The Dollar General store opened in 2022 on Old Wabash Road next to US 24. The store is the only general store in the area around Andrews but does not fall within town limits. The boat ramp is also located across the Wabash River from the town. SR 105 is maintained by INDOT, meaning that the town has no control of the route between town limits and the store. Due to the location near US 24, any future business development is anticipated to happen near SR 105 and Old Wabash Rd. The trail would provide safe pedestrian access from the town to the store and provide opportunities for growth.

There are two options to span the trail cross the river. The first is to realign the road across the bridge to fit the trail. The trail would be separated by a plastic barrier. The second option is to build a cantilevered sidewalk bridge attached to the roadway bridge. This would provide further separation from the roadway at an added cost.

Signs guiding bicycles to follow SR 105 viewed from River Rd

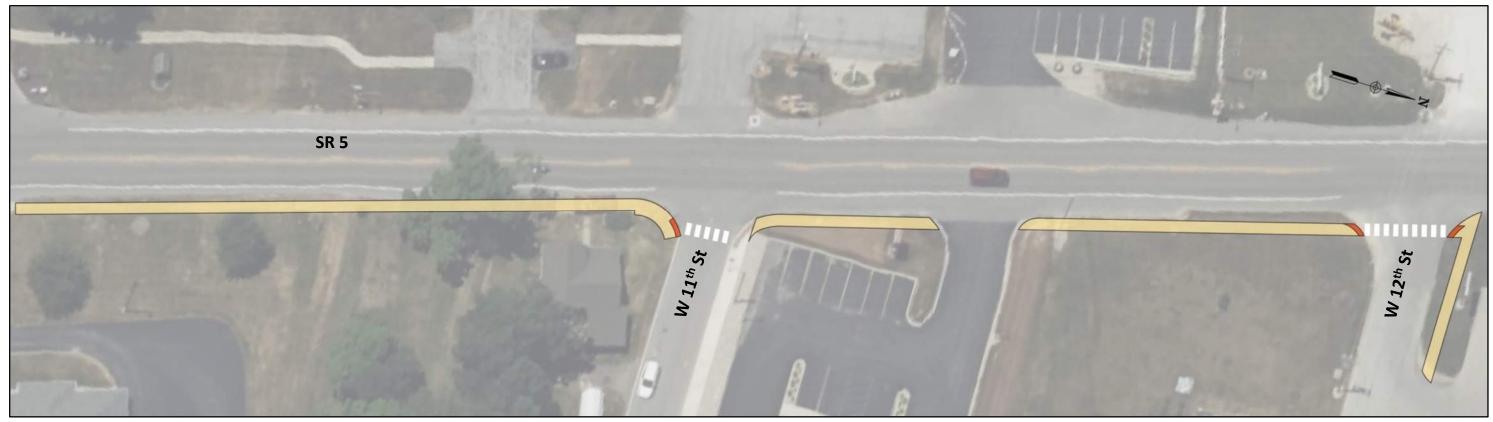

Plan view of proposed cantilevered sidewalk along SR 105 bridge over Wabash River

View of northbound shoulder width on SR 105 bridge over Wabash River

Example cantilevered sidewalk bridge (Creative Composites Group)

Proposed trail and curb ramp plan view at SR 105 / Old Wabash Rd intersection

21. WARREN SR 5 SIDEWALK


The Warren SR 5 sidewalk project aims to connect the existing sidewalk on SR 5 with the business area on the north side of Warren. This location was identified by stakeholders as an area of concern for pedestrian traffic due to the lack of pedestrian facilities along a state road. The existing sidewalk is on the east side of SR 5 and ends at the Mossburg Dr intersection, 650' short of the Dollar General store. There is a sidewalk on the west side of SR 5 between Mossburg Dr and 11th St but utilizing this route would result in pedestrians crossing SR 5 twice within 330'. The new sidewalk would connect the businesses to the existing sidewalk without forcing users to cross the state road and thus enhance walkability within the town. A potential northward extension to Salamonie School may be considered if pedestrian demand warrants. The school is 0.5 miles north of the end of the existing sidewalk.

View looking south at end of existing sidewalk

View looking north at businesses east of SR 5

Plan view of proposed sidewalk extension

View looking north beyond end of existing sidewalk

Policies, Processes, Progress and Transparency

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

5. Policies, Processes, Progress and Transparency

1. CURRENT PROCESSES

Huntington County does not currently have a safety action plan. The implementation of this plan should serve as a baseline for future safety evaluations in Huntington County. Additionally, the recommended practices and processes contained in this report should be adopted by the county as standard practices.

2. MEASURING PROGRESS

The measurement of the SS4A implementation's progress will be carried out in a similar manner to the safety analysis contained in this report. Crash data will be analyzed from the target areas of SS4A improvements rather than county wide to determine the effectiveness of the program's infrastructure improvements. In project areas, the analysis will look to compare fatal and injury crash rates before and after each improvement is implemented to determine whether the improvements reduced the fatal and injury crash frequency.

3. TRANSPARENCY

To meet the transparency requirements of the SS4A action program, annual reports will be issued from the county. These reports should state the improvements made that year, impacts projects have made to county crash rates before and after improvements, and an outlook on the following year's projects, projected crash rates, and impact on fatalities and injuries.

The SS4A action plan, as well as all annual reports, should be made available and easily accessible online for the public.

4. POLICY ADOPTION / BEST PRACTICES

In addition to following current Indiana Design Manual guidelines, the following safety countermeasures should be implemented in future projects going forward, paving the way for a modern and safe county highway system.

Added STOP AHEAD signs on county routes. Added signage can increase awareness of an upcoming stop sign, especially in areas with sightline obstructions.

Stop sign/bar placement for adequate sightlines.

Of the intersections observed in this report, several (notably Etna/CR 100 N, SR 9/Division, CR 900 N/Meridian, Rangeline/Hauenstein, Rangeline/CR 200 N) have stop signs and stop bars in locations where drivers cannot see oncoming traffic.

Added buzz strips for stop-controlled intersections

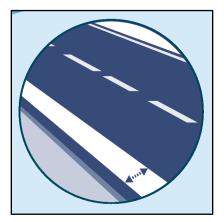
on state routes. Buzz strips can audibly and physically alert drivers of upcoming changes in the road. State routes have higher design speeds and higher traffic counts, leading to an increased risk of high energy collisions at stop-controlled intersections.

Added rumble stripes on resurfacing projects.

Rumble stripes are a proven safety countermeasure acting against roadway departure crashes, which are the leading type of fatal accident in Huntington County. Rumble stripes are a low-cost, high-reward option to prevent drivers from leaving their lanes. Rumble stripes should be considered on all resurfacing projects where the road meets the minimum width requirements.

Use of SafetyEdge on resurfacing/reconstruction projects for non-curbed pavement sections.

SafetyEdge is another proven safety countermeasure to prevent roadway departure crashes. SafetyEdge allows drivers who have already left the roadway a 21% better chance to return to the roadway. **Stripe Centerlines and Edge Lines**. Most Huntington County roads are unstriped, meaning the limits of lanes and the roadway are up to the determination of the driver. Widening edge lines from 4" to 6" can reduce crashes up to 37% for non-intersection, fatal, and injury crashes on rural two-lane roads. Adding edge lines where they aren't currently in use should reduce crashes by this much or more.



Complete Pedestrian Facilities. Most intersections lack proper pedestrian facilities for safe crossing. Facilities include pedestrian signals, painted crosswalks, and ADA-compliant curb ramps. Curb ramps that fail to meet ADA standards should be modernized, crosswalks should be painted, and signalized intersections should have pedestrian walk signals.

6. Concurrence

Trov

Date: 11-4-24

Hentington Conty Highway Superintendent

Date: _____ or

Tom Wall Huntington County Commissioner

in Terry Stoffel

Huntington County Commissioner

Rob Miller

Huntington County Commissioner

Date:

48

Appendices

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

49

2 U.S. Department of Transportation Federal Highway Administration

Safety Benefits: 15% reduction in total crashes.¹

Proven Safety Countermeasures

Backplates with Retroreflective Borders

Backplates added to a traffic signal head improve the visibility of the illuminated face of the signal by introducing a controlled-contrast background. The improved visibility of a signal head with a backplate is made even more conspicuous by framing it with a 1- to 3-inch yellow retroreflective border. Signal heads that have backplates equipped with retroreflective borders are more visible and conspicuous in both daytime and nighttime conditions.

This treatment is recognized as a human factors enhancement of traffic signal visibility, conspicuity, and orientation for both older and color vision deficient drivers. This countermeasure is also advantageous during periods of power outages when the signals would otherwise be dark, providing a visible cue for motorists to stop at the intersection ahead.

safety countermeasure is to adopt it as a standard treatment for signalized intersections across a jurisdiction or State.

Implementation challenges include minimizing installation time, accessing existing signal heads, and structural limitations due to added wind load in instances where an entire backplate is added. Agencies should consider the design of the existing signal support structure to determine if the design is sufficient to support the added wind load.

Retroreflective borders are highly visible during the night. Source: South Carolina DOT

Considerations

Transportation agencies should consider backplates with retroreflective borders as part of their efforts to systematically improve safety performance at signalized intersections. Adding a retroreflective border to an existing signal backplate is a very low-cost safety treatment. This can be done by either adding retroreflective tape to an existing backplate or purchasing a new backplate with a retroreflective border already incorporated. The most efficient means of implementing this proven

ignal Backpla Signal backplate framed with a retroreflective border. Source: FHWA

ZERO

1 (CMF ID: <u>1410</u>) Sayed, T., Leur, P., and Pump, J., *Satety Impact of Increased Traffic Signal Backboards Conspicuity.* 2005 TRB 84th Annual Meeting: Compendium of Papers CD-ROM, Vol. TRB#05-16, Washington, D.C., (2005).

2 U.S. Department of Transportation Federal Highway Administratio

Safety Benefits: **Chevron Signs**

25% reduction in nighttime crashes.¹

16% reduction in non-intersection fatal and injury crashes.²

Oversized Chevron Signs

15% reduction in fatal and injury crashes.³

Sequential Dynamic Chevrons

60% reduction in fatal and injury crashes.⁴

In-Lane Curve Warning **Pavement Markings**

35 - 38% reduction in all crashes.⁵

New Fluorescent Curve Signs or Upgrade Existing Curve Signs to Fluorescent Sheeting

18% reduction in nonintersection, head-on, run-off-road, and sideswipe in rural areas.¹

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https://high ways.dot.gov/safety/rwd/ keep-vehicles-road/horizon tal-curve-safety.

FHWA-SA-21-035

Enhanced Delineation for Horizontal Curves

Enhanced delineation at horizontal curves includes a variety of potential strategies that can be implemented in advance of or within curves, in combination, or individually.

Potential St

Pavement m or wider)

In-lane curve Retroreflectiv

Delineators

Chevron sign

Enhanced C and/or retro Dynamic cur

(including sp Sequential d

Enhanced delineation treatments can alert drivers to upcomina curves. the direction and sharpness of the curve, and appropriate operating speed.

Agencies can take the following steps to implement enhanced delineation strategies:

- expectancy.
- visual trap

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/

safety/proven-safety-counter

measures and https://rosap.

ntl.bts.gov/view/dot/42807.

OFFICE OF SAFETY **Proven Safety** Countermeasures

rategies	In Advance of Curve	Within Curve
narkings (standard width	1	✓
e warning pavement markings	✓	
ive strips on sign posts	✓	v
		✓
ns		✓
Conspicuity (larger, fluorescent, preflective signs)	1	v
ırve warning signs Deed radar feedback signs)	1	
dynamic chevrons		1

1. Review signing practices and policies to ensure they comply with the Manual on Uniform Traffic Control Devices (MUTCD) principles of traffic control devices. Consistent practice for similar curves sets the appropriate driver

2. Use the systemic approach to identify and treat problem curves. For example, Minnesota uses risk factors that include curve radii between 500 and 1,200 ft, traffic volumes between 500 and 1,000 vehicles per day, intersection in the curve, and presence of a

3. Match the appropriate strategy to the identified problem(s), considering the full range of enhanced delineation treatments. Once the MUTCD requirements and recommendations have been met, an incremental approach is often beneficial to avoid excessive cost.

Chevron signs with retroreflective strips on sign posts installed along a curve. Source: FHWA

(CMF ID: 2439,2431,2432) Albin et al. Low-Cost Treatments for Horizontal Curve Safety 2016. FHWA-SA-15-084. (2016). CMF ID: 2438) Srinivasan et al. Safety Evaluation of Improved Curve Delineation. FHWA-HRT-09-045, (2009). 3 (CMF ID: 8978) Lyon et al. Safety Evaluation of Two Ourve Warning Treatments: In-Lane Curve Warning. Pavement Markings and Oversized Chevron Signs. Presented at the 96th TRB Annual Meeting. Paper No. 17-00432, (2017).

4 (CMF ID: <u>10362</u>) Hallmark, S. Evaluation of Sequential Dynamic Chevrons on Rural Two-kane Highways, FHWA, (2017).
5 (CMF ID: <u>10312</u>, <u>9167</u>) Donnell et al. Reducing Roadway Departure Crashes at Horizontal

Curve Sections on Two-Iane Rural Highways, FHWA-SA-19-005, (2019).

2 U.S. Department of Transportation

Federal Highway Administration

Safety Benefits:

Lighting can reduce

crashes up to:

42%

for nighttime injury pedestrian

crashes at intersections.¹

33-38%

for nighttime crashes at rural

and urban intersections.^{2,1}

28%

for nighttime injury crashes

on rural and urban

highways.1

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/

measures and https://

highways.dot.gov/safety/

other/visibility/roadway-

lighting-resources.

safety/proven-safety-counter

Source: FHWA

OFFICE OF SAFETY Proven Safety Countermeasures

Lighting

The number of fatal crashes occurring in daylight is about the same as those that occur in darkness. However, the nighttime fatality rate is three times the daytime rate because only 25 percent of vehicle miles traveled (VMT) occur at night. At nighttime, vehicles traveling at higher speeds may not have the ability to stop once a hazard or change in the road ahead becomes visible by the headlights. Therefore, lighting can be applied continuously along segments and at spot locations such as intersections and pedestrian crossings in order to reduce the chances of a crash.

Adequate lighting (i.e., at or above minimum acceptable standards) is based on research recommending horizontal and vertical illuminance levels to provide safety benefits to all users of the roadway environment. Adequate lighting can also provide benefits in terms of personal security for pedestrians, wheelchair and other mobility device users, bicyclists, and transit users as they travel along and across roadways.

Considerations

Applications

Roadway Segments

Research indicates that continuous lighting on both rural and urban highways (including freeways) has an established safety benefit for motorized vehicles.¹ Agencies can provide adequate visibility of the roadway and its users through the uniform application of lighting that provides full coverage along the roadway and the strategic placement of lighting where it is needed the most.

Intersections and Pedestrian Crossings

Increased visibility at intersections at nighttime is important since various modes of travel cross paths at these locations. Agencies should consider providing lighting to intersections based on factors such as a history of crashes at nighttime, traffic volume, the volume of non-motorized users, the presence of crosswalks and raised medians, and the presence of transit stops and boarding volumes.

made with breakaway features. shielded, or placed far enough from the roadway to reduce the probability and/or severity of fixed-object crashes. Modern lighting technology gives precise control with minimal excessive light affecting the nighttime sky or spilling over to adjacent properties. Agencies can equitably engage with underserved communities to determine where and how new and improved lighting can most benefit the community by considering their priorities, including eliminating crash disparities, connecting to essential neighborhood services, improving active transportation routes, and promoting personal safety.

Source: FHWA

ZERO IS OUR

Most new lighting installations are

2 U.S. Department of Transportation Federal Highway Administratio

Safety Benefits:

Agencies have experienced the following benefits after LRSP implementation:

25%

reduction in county road fatalities in Minnesota.

17%

reduction in fatal and serious injury crashes on county-owned roads in Washington State.

35%

reduction in severe curve crashes in Thurston County, WA

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/

safety/proven-safety-counter

among municipal, county, Tribal, State, and/or Federal entities to leverage expertise and resources.

2 (CMF ID: 2376) Ye et al. A Simultaneous Equations Model of Crash Frequency By Collision Type for Rural Intersections, 87th Annual Meeting of the Transportation

1 (CMF ID: <u>436,433,192</u>) Elvik, R. and Vaa, T., "Handbook of Road Safety Measures." Oxford, United Kingdom, Elsevier, (2004). Research Board, (2008)

FHWA-SA-21-050

(SHSP).

representing the 4E's: engineering, enforcement, education, and emerdency

measures and https:// highways.dot.gov/safety/ local-rural/local-roadsafety-plans. FHWA-SA-21-033

OFFICE OF SAFETY **Proven Safety** Countermeasures

Local Road **Safety Plans**

A local road safety plan (LRSP) provides a framework for identifying, analyzing, and prioritizing roadway safety improvements on local roads. The LRSP development process and content are tailored to local issues and needs. The process results in a prioritized list of issues, risks, actions, and improvements that can be used to reduce fatalities and serious injuries on local roads. FHWA has developed several resources including an LRSP Do-It-Yourself website which further explains the process and includes resources local agencies and their partners need to create and implement an LRSP.¹

Approximately 75 percent of rural roads are owned by local agencies.² While local roads are less traveled than State highways, they have a much higher rate of fatal and serious injury crashes.² Developing an LRSP is an effective strategy to improve local road safety for all road users and support the goals of a State's overall Strategic Highway Safety Plan

Although the development process and resulting plan can vary depending on the local agency's needs, available resources, and targeted crash types, aspects common to LRSPs include:

- Stakeholder engagement
- medical services.
- Collaboration

- Identification of target crash types and crash risk with corresponding recommended proven safety countermeasures
- Timeline and goals for implementation and evaluation.

Local road agencies should consider developing an LRSP to be used as a tool for reducing roadway fatalities, injuries, and crashes.³ LRSPs can help agencies create a prioritized list of improvements. LRSPs are also a proactive risk management technique to demonstrate an agency's responsiveness. The plan should be viewed as a living document that can be updated to reflect changing local needs and priorities.

Infographic showing the LRSP process. Source: FHWA

³ Developing Safety Plans: A Manual for Local Rural Road Owners, FHWA-SA-12-017, provides guidance on developing an LRSF

https://highways.dot.gov/safety/local-rural/local-road-safety-plans
Anderson et al. Noteworthy Practices: Addressing Safety on Locally-Owned and Maintained Roads A Domestic Scan, FHWA-SA-09-019, (2010).

2 U.S. Department of Transportation Federal Highway Administration

Safety Benefits: Center Line Rumble Strips 44-64%

reduction in head-on fatal and injury crashes on two-lane rural roads.⁴

Shoulder Rumble Strips 13-51%

reduction in single vehicle run-off-road fatal and injury crashes on two-lane rural roads.4

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https:// highways.dot.gov/safety/ rwd/keep-vehicles-road/ rumble-strips.

FHWA-SA-21-036

OFFICE OF SAFETY Proven Safety Countermeasures

Longitudinal Rumble Strips and Stripes

With roadway departure crashes

accounting for more than half of

in the United States, rumble strips

drowsy, or otherwise inattentive

Transportation agencies should

strips (including in passing zone

bicycle gaps for systemic safety

projects, location-specific corridor safety improvements, as well as reconstruction or resurfacing

· Rumble strips are relatively low-

• Where rumble strips cannot be placed due to noise concerns. agencies may consider a design using an oscillating sine wave pattern (also known as "mumble strips") that reduces noise outside

cost, and economic analyses have

indicated benefit/cost ratios that

of the vehicle. However, the safety

benefits of this design need more

areas) and milled edge line

or shoulder rumble strips with

consider milled center line rumble

systemically.

projects. Considerations

exceed 100.1

study.2

the fatal roadway crashes annually

and stripes are designed to address

these crashes by alerting distracted,

drivers who drift from their lane. They

are most effective when deployed

Longitudinal rumble strips are milled or raised elements on the pavement intended to alert drivers through vibration and sound that their vehicle has left the travel lane. They can be installed on the shoulder, edge line, or at or near the center line of an undivided roadway.

Rumble stripes are edge line or center line rumble strips where the pavement marking is placed over the rumble strip. This can increase the visibility and durability of the pavement marking during wet, nighttime conditions, and can improve the durability of the marking on roads with snowplowing operations.

• Maintenance concerns:

• Where rumble strips are placed along a pavement joint, there are typically no issues with joint stability if the pavement structure and joint was already in good condition.

• Studies have shown no evidence of issues related to snow, ice, or rain build-up in the rumble strip.³

Shoulder rumble strips and center line rumble stripes are installed on this roadway. Source: FHWA

ZERO GOAL

Example of an edge line rumble stripe. Source: Missouri DOT

1 Himes, S., and McGee, H. Decision Support Guide for the Installation of Shoulder and Center Line Rumble Strips on Non-Freeways, Federal Highway Administration Report No. FHWA-SA-16-115, (August 2016 2 Bedsole et al. Did You Hear That? Public Roads Magazine, Volume 80, No. 4. FHWA Publication No. FHWA-HRT-17-002, (2017). 3 NCHRP Synthesis 339: Centerline Rumble Strips - A Synthesis of Highway Practices, (2005

4 (CMF ID: 3358, 3366, 3426, 3648) NCHRP Report 641; Guidance for the Design and Application of Shoulder and Centerline Rumble Strips, (2009).

2 U.S. Department of Transportation Federal Highway Administratio

Safety Benefits: Median with **Marked Crosswalk**

46% reduction in pedestrian crashes.²

Pedestrian Refuge

Island 56%

reduction in pedestrian crashes.²

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https://high ways.dot.gov/sites/fhwa.dot. gov/files/2022-08/techSheet PedRefugeIsland2018.pdf.

FHWA-SA-21-044

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

OFFICE OF SAFETY **Proven Safety** Countermeasures

Medians and **Pedestrian Refuge Islands in Urban** and Suburban Areas

A median is the area between opposing lanes of traffic, excluding turn lanes. Medians in urban and suburban areas can be defined by pavement markings, raised medians, or islands to separate motorized and nonmotorized road users.

A **pedestrian refuge island** (or crossing area) is a median with a refuge area that is intended to help protect pedestrians who are crossing a road.

Pedestrian crashes account for fatalities annually, and 74 percent of these occur at non-intersection locations.¹ For pedestrians to safely cross a roadway, they must estimate vehicle speeds, determine acceptable gaps in traffic based on their walking speed, and predict vehicle paths. Installing a median or pedestrian refuge island can help improve safety by allowing pedestrians to cross one direction of traffic at a time.

Transportation agencies should consider medians or pedestrian refuge islands in curbed sections of urban and suburban multilane

roadways, particularly in areas with approximately 17 percent of all traffic a significant mix of pedestrian and vehicle traffic, traffic volumes over 9,000 vehicles per day, and travel speeds 35 mph or greater. Medians/ refuge islands should be at least 4-ft wide, but preferably 8 ft for pedestrian comfort. Some example locations that may benefit from medians or pedestrian refuge islands include:

- · Mid-block crossings.
- Approaches to multilane intersections
- · Areas near transit stops or other pedestrian-focused sites.

pedestrian refuge islands. Source: City of Charlotte, NC

near a roundabout. Source: www.pedbikeimages.org / Dan Burden

1 National Center for Statistics and Analysis. (2020, March). Pedestrians: 2018 data (Traffic Safety Facts. Report No. DOT HS 812 850). National Highway Traffic Safety Administration 2 (CMF ID: <u>176</u>) Desitop Reference for Crash Reduction Factors, FHWA-SA-08-011, September 2008, Table 11.

2 U.S. Department of Transportation Federal Highway Administration

Safety Benefits: HFST can reduce crashes up to: 63% for injury crashes at ramps.²

> 48% for injury crashes at horizontal curves.²

20% for total crashes at intersections.³

Automated application of HFST Source: FHWA

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https:// highways.dot.gov/safety/ rwd/keep-vehicles-road/ pavement-friction/hfst.

FHWA-SA-21-052

Pavement Friction Management

Friction is a critical characteristic of a pavement that affects how vehicles interact with the roadway, including the frequency of crashes. Measuring, monitoring, and maintaining pavement friction—especially at locations where vehicles are frequently turning, slowing, and stopping-can prevent many roadway departure, intersection, and pedestrian-related crashes.

OFFICE OF SAFETY

Proven Safety

Countermeasures

Pavement friction treatments, such as High Friction Surface Treatment (HFST), can be better targeted and result in more efficient and effective installations when using continuous pavement friction data along with crash and roadway data.

Continuous Pavement Friction Measurement

Friction data for safety performance is best measured with Continuous **Pavement Friction Measurement** (CPFM) equipment. Spot friction measurement devices, like lockedwheel skid trailers, cannot safely and accurately collect friction data in curves or intersections, where the pavement polishes more auickly and adequate friction is so much more critical. Without CPFM equipment, agencies will assume the same friction over a mile or more.

CPFM technology measures friction continuously at highway speeds and provides both network and seament level data. Practitioners can analyze the friction, crash, and roadway data to better understand and predict where friction-related crashes will occur to better target locations and more effectively install treatments.1

High Friction Surface Treatment HFST consists of a layer of durable, anti-abrasion, and polish-resistant aggregate over a thermosetting polymer resin binder that locks the aggregate in place to restore or enhance friction and skid resistance. Calcined bauxite is the aggregate shown to yield the best results and should be used with HFST applications.

1 Izeppl et al. Continuous Friction Measurement Equipment as a Tool for Improving Crash Rate Prediction: A Pilot Study. Virginia Department of Transportation, (2016). 2 (CMF ID: <u>10342</u> 10333) Meritt et al. Development of Crash Modification Factors for High Friction Surface Treatments. FHWA, (2020). 3 (CMF III): 2259) NCHRP Report 617: Accident Modification Factors for Traffic Engineering and ITS Improvements, (2008).

Applications

HFST should be applied in locations with increased friction demand, includina:

- · Horizontal curves.
- Interchange ramps.
- Intersection approaches.
- o Higher-speed signalized and stop-controlled intersections.
- o Steep downward grades.
- · Locations with a history of rear-end, failure to yield, wet-weather, or redlight-running crashes
- Crosswalk approaches.
- Considerations
- HFST is applied on existing pavement, so no new pavement is added.
- If the underlying pavement structure is unstable, then the HFST life cycle may be shortened, resulting in pre-mature failure.
- The automated installation method is preferred as it minimizes issues. often associated with manual installation: human error due to fatigue, inadequate binder mixing, improper and uneven binder thickness, delayed aggregate placement, and inadequate aggregate coverage.
- The cost can be reduced when bundling installations at multiple locations.

ZEROGOAL

2 U.S. Department of Transportation Federal Highway Administr

Safety Benefits: RCUT

Two-Way Stop-Controlled to RCUT:

54%

reduction in fatal and injury crashes.²

Signalized Intersection to Signalized RCUT:

22%

reduction in fatal and injury crashes.³

Unsignalized Intersection to Unsignalized RCUT:

63%

reduction in fatal and injury crashes. 4

MUT

30%

reduction in intersection-

related injury crash rate.⁵

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/safety/

proven-safety-countermeasures

and https://highways.dot.

gov/safety/intersection-

safety/intersection-types/

reduced-left-turn-conflict-

intersections.

EHWA-SA-21-030

Median U-turn

The MUT intersection modifies direct left turns from the maior approaches. Vehicles proceed through the main intersection, make a U-turn a short distance downstream, followed by a right turn at the main intersection The U-turns can also be used for

FHWA-HRT-07-033. (2007).

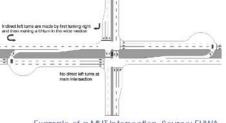
SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

OFFICE OF SAFETY **Proven Safety** Countermeasures

Reduced Left-Turn Conflict Intersections

Reduced left-turn conflict intersections are geometric designs that alter how left-turn movements occur. These intersections simplify decision-making for drivers and minimize the potential for higher severity crash types, such as head-on and angle. Two highly effective designs that rely on U-turns to complete certain left-turn movements are known as the Restricted Crossing U-turn (RCUT) and the Median U-turn (MUT).

Restricted Crossing U-turn


The RCUT intersection, also known as a J-Turn, Superstreet, or Reduced Conflict Intersection, modifies the direct left-turn and through movements from cross-street approaches. Minor road traffic makes a right turn followed by a U-turn at a designated location—either signalized or unsignalized—to continue in the desired direction. The RCUT is suitable for and adaptable to a wide variety of circumstances, ranging from isolated rural, high-speed locations to urban and suburban high-volume, multimodal corridors. It is a competitive and less costly alternative to constructing an interchange. RCUTs work well when consistently used along a corridor, but also can be used effectively at individual intersections. Studies have shown that installing an RCUT can result in a 30-percent increase in throughput and a 40-percent reduction in network intersection travel time.

modifying the cross-street left turns, similar to the RCUT.

The MUT is an excellent choice for intersections with heavy through traffic and moderate left-turn volumes. Studies have shown a 20- to 50-percent improvement in intersection throughput for various lane configurations as a result of implementing the MUT design. When implemented at multiple intersections along a corridor, the efficient twophase signal operation of the MUT can reduce delay, improve travel times, and create more crossing opportunities for pedestrians and bicyclists.

Example of a unsignalized RCUT intersection. Source: FHWA

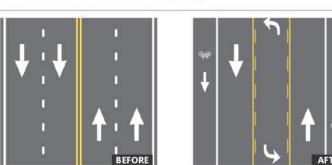
Example of a MUT Intersection. Source: FHWA

NC State University, (2010). & (CMF ID: 1<u>0867</u>) Synthesis of the Median U-Turn Treatment, Safety, and Operational Benefits.

Hugher and Jagannathan. Restricted Crossing U-Turn Intersection, FHWA-HRT-09-059, (2009).

⁽CMF ID: <u>5555</u>) Edara et al. Evaluation of J+tum Intersection Design Performance in Missouri. MoDOT, (2013). (CMF ID: <u>5555</u>) Edara et al. Evaluation of J+tum Intersection Design Performance in Missouri. MoDOT, (2013). (CMF ID: <u>5285</u>) Hummer and Raio. Safety Evaluation of a Signalized Restricted Crossing U-Turn. FHWA-HRT-17-082, (2017).

^{4 (}CMF ID: 4884) Hummer et al. Superstreet Benefits and Capacities. FHWA/NC/2009-06,


2 U.S. Department of Transportation Federal Highway Administration

Proven Safety Countermeasures

Road Diets (Roadway Reconfiguration)

A Road Diet, or roadway reconfiguration, can improve safety, calm traffic, provide better mobility and access for all road users, and enhance overall quality of life. A Road Diet typically involves converting an existing four-lane undivided roadway to a three-lane roadway consisting of two through lanes and a center two-way left-turn lane (TWLTL).

Before and after example of a Road Diet. Source: FHWA

Benefits of Road Diet installations may include:

- Reduction of rear-end and left-turn crashes due to the dedicated left-turn lane.
- Reduced right-angle crashes as side street motorists cross three versus four travel lanes.
- Fewer lanes for pedestrians to cross.
- Opportunity to install pedestrian refuge islands, bicycle lanes, on-street parking, or transit stops.
- Traffic calming and more consistent speeds.
- · A more community-focused, Complete Streets environment that better accommodates the needs of all road users.

A Road Diet can be a low-cost safety solution when planned in conjunction with a simple pavement overlay, and the reconfiguration can be accomplished at no additional cost. Typically, a Road Diet is implemented on a roadway with a current and future average daily traffic of 25,000 or less.

CMF ID: <u>5554 2841</u>) Evaluation of Lane Reduction "Road Diet" Measures on Crashes, FHWA-HR1-10-053, (2010).

Road Diet project in Honolulu, Hawaii. Source: Leidos

ZERQ

2 U.S. Department of Transportation Federal Highway Administratio

Safety Benefits: 10-60% reduction in total crashes.

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/

safety/proven-safety-counter

measures and https://

highways.dot.gov/safety/

data-analysis-tools/systemic/

road-safety-audits-rsa.

FHWA-SA-21-048

benefits:

- built
- countermeasures.
- design.
- stakeholders.

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

For more information on this

and other FHWA Proven Safety

Countermeasures, please visit

https://highways.dot.gov/

safety/proven-safety-counter

measures and https://

highways.dot.gov/safety/

other/road-diets.

FHWA-SA-21-046

Proven Safety Countermeasures

Road Safety Audit

While most transportation agencies have established traditional safety review procedures, a road safety audit (RSA) or assessment is unique. RSAs are performed by a multidisciplinary team independent of the project. RSAs consider all road users, account for human factors and road user capabilities, are documented in a formal report, and require a formal response from the road owner. (See the eight steps for conducting an RSA below.)

Responsibilities RSA Team

Design Team/Project Owner

RSAs provide the following

 Reduced number and severity of crashes due to safer designs.

• Reduced costs resulting from early identification and mitigation of safety issues before projects are

 Increased opportunities to integrate multimodal safety strategies and proven safety

 Expanded ability to consider human factors in all facets of

 Increased communication and collaboration among safety

 Objective review by independent multidisciplinary team.

RSAs can be performed in any phase of project development, from planning through construction. Agencies may focus RSAs specifically on motorized vehicles, pedestrians, bicyclists, motorcyclists, or a combination of these roadway users. Agencies are encouraged to conduct an RSA at the earliest stage possible, as all roadway design options and alternatives are being explored.

Multidisciplinary team performs field review during an RSA. Source: FHWA

1 Road Safety Audits: An Evaluation of RSA Programs and Projects, FHWA-SA-12-037; and FHWA Road Safety Audit Guidelines, FHWA-SA-06-06.

2 US Depo tment of Transportation

Federal Highway Administration

OFFICE OF SAFETY **Proven Safety** Countermeasures

Roadside Design Improvements at Curves

Horizontal curves account for 27 percent of all fatal crashes and 80 percent of all fatal crashes at curves are roadway departure crashes.¹ Roadside design improvements at curves is a strategy encompassing several treatments that target the high-risk roadside environment along the outside of horizontal curves. These treatments can reduce roadway departure fatalities and serious injuries by giving vehicles the opportunity to recover safely and by reducing crash severity.

Roadside design improvements can be implemented alone or in combination, and are particularly recommended at horizontal curves—where data indicates a higher risk for roadway departure fatalities and serious injuries.

Safety Benefits:

Flatten sideslope from 1V:3H to 1V:4H:

8% reduction for single-vehicle crashes.²

Flatten sideslope from 1V:4H to 1V:6H:

12% reduction for single-vehicle crashes.²

Increase the distance to

roadside features from 3.3 ft to 16.7 ft:

22% reduction for all crashes.³

Increase the distance to roadside features from 16.7 ft to 30 ft:

44%

reduction for all crashes.³

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https:// highways.dot.gov/safety/ rwd/provide-safe-recovery/ clear-zones/clear-zones.

FHWA-SA-21-029

Roadside Design Improvements to **Provide for a Safe Recovery**

In cases where a vehicle leaves the roadway, having strategic roadside design elements, including an added or widened shoulder, flattened sideslopes, or a widened clear zone can provide drivers with an opportunity to regain control and re-enter the roadway in their lane or come to a safe stop before rolling over or encountering a fixed object.

• A **clear zone** is an unobstructed, traversable roadside area that allows a driver to stop safely or regain control of a vehicle that has left the roadway. Agencies should avoid adding new fixed objects such as trees and utility cabinets or poles in the clear zone. AASHTO's Roadside Design Guide details the clear zone width adjustment factors to be applied at horizontal curves.

- Slope flattening reduces the steepness of the sideslope to increase drivers' ability to keep the vehicle stable, regain control of the vehicle, and avoid obstacles. Slopes of 1V:4H or flatter are considered recoverable (i.e., drivers can retain control of a vehicle by slowing or stopping). Slopes between 1V:3H and 1V:4H are generally considered traversable, but non-recoverable (i.e., errant vehicle will continue to the bottom of the slope).

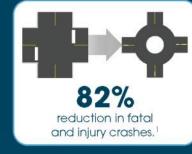
Tertality Analysis Reporting System.
(CMF ID: <u>4627,4632</u>) NCHRP Report 617: Accident Modification Factors for
Traffic Engineering and ITS Improvements, (2008).
3 (CMF ID: <u>35,36</u>) EMk, R., and Vaa, T. Handbock of Road Safety Measures, (2004).

 Adding or widening shoulders gives drivers more recovery area to regain control in the event of a roadway departure.

Roadside Design Improvements to Reduce Crash Severity

Since not all roadside hazards can be removed, relocated, or redesigned at curves, installing roadside barriers to shield unmovable objects or steep embankments may be an appropriate treatment. Three common types of roadside barriers are:

- Cable barrier is a flexible barrier made from steel cables mounted on weak steel posts. Flexible barriers are more forgiving and have the most deflection.
- Metal-beam guardrail is a semirigid barrier where a W-beam or box-beam is mounted on steel or timber posts. These deflect less than cable barriers, so they can be located closer to objects where space is limited.
- Concrete barrier is a rigid barrier that has little to no deflection.


Clear zone provided on the outside of the curve. Source: FHWA.

ZERO

2 U.S. Department of Transportation Federal Highway Administra

Safety Benefits: **Two-Way Stop-Controlled** Intersection to a Roundabout

Signalized Intersection to a Roundabout

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways. dot.gov/safety/provensafety-countermeasures and https://highways.dot.gov/ safety/intersection-safety/ intersection-types/roundabouts.

FHWA-SA-21-042

OFFICE OF SAFETY **Proven Safety** Countermeasures

Roundabouts

The modern roundabout is an intersection with a circular configuration that safely and efficiently moves traffic. Roundabouts feature channelized, curved approaches that reduce vehicle speed, entry yield control that gives right-ofway to circulating traffic, and counterclockwise flow around a central island that minimizes conflict points. The net result of lower speeds and reduced conflicts at roundabouts is an environment where crashes that cause injury or fatality are substantially reduced.

Roundabouts are not only a safer type of intersection: they are also efficient in terms of keeping people moving. Even while calming traffic, they can reduce delay and queuing when compared to other intersection alternatives. Furthermore, the lower vehicular speeds and reduced conflict environment can create a more suitable environment for walking and bicycling.

Roundabouts can be implemented in both urban and rural areas under a wide range of traffic conditions. They can replace signals, twoway stop controls, and all-way stop controls. Roundabouts are an effective option for managing speed and transitioning traffic from highspeed to low-speed environments, such as freeway interchange ramp terminals, and rural intersections along high-speed roads.

Illustration of a multilane roundabout Source: FHWA

1 (CMF ID: 211, 226) AASHTO. The Highway Safety Manual, American Association of State Highway Transportation Professionals, Washington, D.C., (2010)

2 US Depo tment of Transportation Federal Highway Administration

OFFICE OF SAFETY **Proven Safety** Countermeasures

Safety Benefits: 11% reduction in fatal and injury crashes.²

21% reduction in run-off-road crashes.²

19% reduction in head-on crashes.²

Benefit-Cost Ratio Range³ 700:1 to 1,500:1

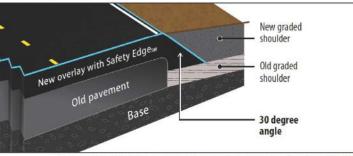
For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https://high ways.dot.gov/safety/rwd/ provide-safe-recovery/ safetyedge.

FHWA-SA-21-038

SafetyEdgeSM

The SafetyEdge[™] technology shapes the edge of the pavement at approximately 30 degrees from the pavement cross slope during the paving process. This safety practice eliminates the potential for vertical drop-off at the pavement edge, has minimal effect on project cost, and can improve pavement durability by reducing edge raveling of asphalt.

Rural road crashes involving edge drop-offs are 2-4 times more likely to include a fatality than other crashes on similar roads.¹ Vehicles may leave the roadway for various reasons ranging from distracted driver errors to low visibility, or to the presence of an animal on the road. Exposed vertical pavement edges can cause vehicles to become unstable and prevent their safe return to the roadway. The SafetyEdgeSM gives drivers the opportunity to return to their travel lane while maintaining control of their vehicle.


The SafetyEdgeSM technology only requires adding one of several commercially available devices to the screed or endgate when placing hot-mix asphalt. Forms for shaping the edge of concrete pavement are simpler and can be made on site by the contractor. Some agencies allow the SafetyEdgeSM to remain exposed while a segment is under construction, unlike conventional pavement edges. However, before construction ends, agencies should bring the adjacent roadside flush with the top of the pavement

for both the SafetyEdgeSM and traditional pavement edge. Over time, regardless of the edge type, the edge may become exposed due to settling, erosion, and tire wear. When this occurs, the gentle slope provided by the SafetyEdgeSM is preferred versus the traditional vertical pavement edge.

Transportation agencies should develop standards for implementing the SafetyEdge[™] systemwide on all new asphalt paving and resurfacing projects where curbs and/or guardrail are not present, while also encouraging standard application for concrete pavements.

Example of the SafetyEdge[™] after backfill material settles or erodes. Source: FHWA

Cross-section view of an overlay with the SafetyEdge™. Source: FHWA-SA-17-044

Hallmark et al. Safety Impacts of Pavement Edge Drop-offs, (Washington, DC: AAA Foundation for Traffic Safety: 2006), p. 93. 2 (CMF ID: <u>2205</u>, <u>921</u>), <u>9212</u>) Donnell et al. Development of Crash Modification Factors for the Application of the SafetyEdge^{MM} on Two-Lane Rural Roads. FHWA-HRT-17-081, (2017). 3 Safety Effects of the SafetyEdge^{MM}, FHWA-SA-17-044, (2017).

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

2 U.S. Department of Transportation Federal Highway Administra

Safety Benefits:

10% reduction of fatal and injury crashes at all locations/types/areas.

15%

reduction of nighttime crashes at all locations/ types/areas.

27% reduction of fatal and

injury crashes at rural intersections.

19%

reduction of fatal and injury crashes at 2-lane by 2-lane intersections.

Average **Benefit-Cost Ratio**

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https://highways. dot.gov/sites/fhwa.dot.gov/ files/2022-06/fhwasa18047.pdf.

FHWA-SA-21-031

OFFICE OF SAFETY **Proven Safety** Countermeasures

Systemic Application of Multiple Low-Cost Countermeasures at Stop-Controlled Intersections

This systemic approach to intersection safety involves deploying a package of multiple low-cost countermeasures, including enhanced signing and pavement markings, at a large number of stop-controlled intersections within a jurisdiction. These countermeasures increase driver awareness and recognition of the intersections and potential conflicts.

There are several benefits to systemically applying multiple low-cost countermeasures at stopcontrolled intersections, including,

- Resources are maximized because the treatments are low cost.
- A high number of intersections can receive treatment.

• Improvements are highly costeffective, with an average benefitcost ratio of 12:1, even assuming a conservative 3-year service life.

Example of countermeasures on the through approach. Source: South Carolina DOT

Example of countermeasures on the stop approach. Source: South Carolina DOT

The low-cost countermeasures for stop-controlled intersections generally consist of the following treatments:

On the Through Approach

- Doubled-up (left and right), oversized advance intersection warning signs, with supplemental street name plaques (can also include flashing beacon).
- Retroreflective sheeting on sign posts.
- · Enhanced pavement markings that delineate through lane edge lines.

On the Stop Approach

- Doubled-up (left and right), oversized advance "Stop Ahead" intersection warning signs (can also include flashing beacon).
- Doubled-up (left and right), oversized Stop signs.
- Retroreflective sheeting on sign posts.
- Properly placed stop bar.
- Removal of vegetation, parking, or obstructions that limit sight distance.
- Double arrow warning sign at stem of T-intersections.

Source: (CMF ID: <u>8867, 8870, 8874, 8893</u>) T. Le et al. "Satety Effects of Low-Cost Systemic Safety Improvements at Signalized and Stop-Controlled Intersections," 96th Annual Meeting of the Transportation Research Board, Paper Number 17-06379, January 2017.

2 US Den ment of Transportation

Safety Benefits:

Sidewalks

65-89%

reduction in crashes involving

pedestrians walking along

roadways.3

Paved Shoulders

71%

reduction in crashes involving

pedestrians walking along

roadways.

Proven Safety Countermeasures

Walkways

A walkway is any type of defined space or pathway for use by a person traveling by foot or using a wheelchair. These may be pedestrian walkways, shared use paths, sidewalks, or roadway shoulders.

With more than 6,200 pedestrian fatalities and 75,000 pedestrian injuries occurring in roadway crashes annually,¹ it is important for transportation agencies to improve conditions and safety for pedestrians and to integrate walkways more fully into the transportation system. Research shows people living in lowincome communities are less likely to encounter walkways and other pedestrian-friendly features.²

Well-designed pedestrian walkways, shared use paths, and sidewalks improve the safety and mobility of pedestrians. Pedestrians should have direct and connected network of walking routes to desired destinations without gaps or abrupt changes. In some rural or suburban areas, where these types of walkways are not feasible, roadway shoulders provide an area for pedestrians to walk next to the roadway, although these are not preferable.

Transportation agencies should work towards incorporating pedestrian facilities into all roadway projects

unless exceptional circumstances exist. It is important to provide and maintain accessible walkways along both sides of the road in urban areas, particularly near school zones and transit locations, and where there is a large amount of pedestrian activity. Walkable shoulders should also be considered along both sides of rural highways when routinely used by pedestrians

Source: pedbikeimages.org / Burden

ZEROGOAL

Paved shoulder used as a walkway. Source: pedbikeimages.org / Burden

 National Center for Statistics and Analysis. (2020, March). Pedestrians 2018 data (Traffic Safety Facts. Report No. DOT HS 812 860). National Highway Traffic Safety Administration migravey induits sately Administration. 2 Globs, et all. Income Disparties in Street Features that Encourage Walking. Bridging the Gap. (2012, March). 3 Gan et al. Update of Florida Crash Reduction Factors and Countermeasures to Improve the Development of District Safety Improvement Projects. Florida DOT, (2005). 2 US Deog Iment of Transportation Federal Highway Admini

Safety Benefits: Wider edge lines can reduce crashes up to:

37% for non-intersection, fatal and injury crashes on rural, two-lane roads.²

22% for fatal and injury crashes on rural freeways.³

Benefit Cost Ratio 25:1

for fatal and serious injury crashes on two-lane rural roads.4

For more information on this and other FHWA Proven Safety Countermeasures, please visit https://highways.dot.gov/ safety/proven-safety-counter measures and https://high ways.dot.gov/safety/other/ visibility/pavement-markings.

FHWA-SA-21-055

- Presence of curves.
- Traffic volumes.
- History of nighttime crashes.

FHWA-SA-21-047

SAFE STREETS AND ROADS FOR ALL SAFETY ACTION PLAN

Proven Safety Countermeasures

Wider Edge Lines

Roadway departures account for over half of all traffic fatalities in the United States. If drivers cannot clearly identify the edge of the travel lanes and see the road alignment ahead, the risk of roadway departure may be greater. Wider edge lines enhance the visibility of travel lane boundaries compared to traditional edge lines. Edge lines are considered "wider" when the marking width is increased from the minimum normal line width of 4 inches to the maximum normal line width of 6 inches.¹

Applications

Wider edge lines increase drivers' perception of the edge of the travel lane and can provide a safety benefit to all facility types (e.g., freeways, multilane divided and undivided highways, two-lane hiahways) in both urban and rural areas.² Wider edge lines are most effective in reducing crashes on rural two-lane highways, especially for single-vehicle crashes.³ Agencies should also consider implementing a systemic approach to wider edge line installation based roadway departure crash risk factors. Potential risk factors for two-lane rural roads

• Pavement and shoulder widths.

Considerations

- Wider edge lines are relatively low cost.
- Wider edge lines can be implemented using existing equipment during maintenance procedures like re-striping and resurfacing, with the only cost increase being the additional material.
- Paint may have a lower initial cost, but more durable materials (e.g., thermoplastic) may result in a lower life cycle cost based on their longer service life.
- As the number of automated vehicles increases on roadways. wider edge lines may provide better guidance for these vehicles' sensors.

Source: Texas Transportation Institute

- Manual on Uniform Traffic Control Devices (MUTCD), Section 3A.04, FHWA, (2023).
- 2 (CMF ID: 4737) Park et al. "Safety effects of wider edge lines on rural, two-lane highways " Accident Analysis and Prevention Vol. 48, pp.317-325, (2012).
- 3 Potts et al. Benefit/Cost Evaluation of MoDOT's Total Striping and Delineation
- Program: Phase III. Missouri Department of Transportation, (2011). 4 Abdel-Rahim et al. Safety Impacts of Using Wider Pavement Markings
- on Two-Lane Rural Highways in Idaho. Idaho Transportation Department, (2018).

APPENDIX B: Project Scoring Matrix

Project	Crash Rates	Public Engagement	Reward/Cost Ratio	Disadvantaged Communities	SCORE	RANK	TIER
Division Rd / SR 105 Intersection	30	5	5	0	90	1	1
SR 5 Warren Rd Corridor Improvements	29	3	4	3	85	2	1
US 224 Corridor Improvements	24	1	5	3	72	3	1
SR 16 Widening	25.2	2	4	0	68.4	4	1
Old 24 Corridor Reconfiguration	23	3	1	5	68	5	1
SR 9 / Division Rd Intersection	23.3	4	3	0	67.6	6	1
Low-Cost Signage Improvements	19	4	3	3	65	7	1
Park Dr / LaFontaine St Intersection	22.3	1	4	0	59.6	8	2
US 24 / SR 9 Signal Improvements	20.1	2	4	0	58.2	9	2
Etna Rd / CR 100 N Intersection	20.7	1	4	0	56.4	10	2
US 24 Auxiliary Lane	15.5	2	3	3	52	11	2
Market St / First St Intersection	14	1	3	5	50	12	2
SR 5 Goshen Rd Widening	17.2	1	2	2	47.4	13	2
US 24 / CR 900 N Slotted Left Turn	10.9	3	3	0	39.8	14	3
SR 3 / SR 116 Bumpout	10	2	4	0	38	15	3
CR 300 W Widening	10	2	2	0	32	16	3
Jefferson St Sidewalk	0	2	3	2	19	17	3
Andrews SR 105 Trail	0	2	3	0	15	18	3
Warren SR 5 Sidewalk	0	1	3	0	12	19	3
MULTIPLIER	2	3	3	2			

To determine the priority of each project, the involved roadways were scored out of 100 points by crash rates, public engagement, cost effectiveness, and service to underserved communities. As the primary goal of the SS4A action plan is to reduce crash rates, particularly fatal crashes, most of the score (60 points) consists of crash ratings. Crashes were scored by their severity and frequency to determine the most dangerous intersections and corridors, with increased points for fatal and injury crashes. Public engagement involves scoring projects (out of 15 points) on stakeholder input, with projects earning additional points for holding greater public concern. The project's cost effectiveness, or reward/cost ratio, was scored (out of 15 points) to determine which projects would most effectively use SS4A grant money. Projects that would utilize low-cost countermeasures and address more severe crashes scored higher than projects involving full depth reconstruction and lower severity crashes. Projects were also scored (out of 10 points) on service to underserved communities. Part of the SS4A program is providing improvements to census tracts designated as transportation disadvantaged, projects in these locations receive additional points for making significant improvements in underserved communities.

58